IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2328-d1392915.html
   My bibliography  Save this article

Adaptive Design of Solar-Powered Energy Systems Based on Daily Clearness State Evolution

Author

Listed:
  • Dong Liang

    (State Grid Gansu Electric Power Company Linxia Power Supply Company, Linxia 731100, China)

  • Long Ma

    (State Grid Gansu Electric Power Company Linxia Power Supply Company, Linxia 731100, China)

  • Peng Wang

    (State Grid Gansu Electric Power Company Linxia Power Supply Company, Linxia 731100, China)

  • Yuanxia Li

    (State Grid Gansu Electric Power Company Linxia Power Supply Company, Linxia 731100, China)

  • Yiping Luo

    (State Key Laboratory of Eco-Hydraulic in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

Abstract

The optimal designing of the hybrid energy system (HES) is a challenging task due to the multiple objectives and various uncertainties. Especially for HES, primarily powered by solar energy, the reference solar radiation data directly impact the result of the optimization design. To incorporate the stochastic characteristics of solar radiation into the sizing process, a data-driven stochastic modeling method for solar radiation is proposed. The method involves two layers of stochastic processes that capture the intraday variation and daily evolution of solar radiation. First, the clearness index (CI) is introduced to describe the radiation intensity at different times. Then, the daily clearness state (DCS) is proposed, based on the statistical indicators of the intraday CI. The Markov model is used to describe the stochastic evolutionary characteristics between different DCSs. The probabilistic distribution of the CI under different DCS is obtained based on the diffusion kernel density estimation (DKDE), which is used for the stochastic generation of the CI at various times of the day. Finally, the radiation profile required for the optimal design is obtained by the stochastic generation of the DCS sequences and the intraday clearness index under corresponding states. A case study of an off-grid solar-powered HES is provided to illustrate this methodology.

Suggested Citation

  • Dong Liang & Long Ma & Peng Wang & Yuanxia Li & Yiping Luo, 2024. "Adaptive Design of Solar-Powered Energy Systems Based on Daily Clearness State Evolution," Energies, MDPI, vol. 17(10), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2328-:d:1392915
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2328/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2328/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    2. Zhang, Xiongwen, 2014. "A statistical approach for sub-hourly solar radiation reconstruction," Renewable Energy, Elsevier, vol. 71(C), pages 307-314.
    3. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    4. Chen, Zhang & Yiliang, Xie & Hongxia, Zhang & Yujie, Gu & Xiongwen, Zhang, 2023. "Optimal design and performance assessment for a solar powered electricity, heating and hydrogen integrated energy system," Energy, Elsevier, vol. 262(PA).
    5. Li, Mengyu & Zhang, Xiongwen & Li, Guojun & Jiang, Chaoyang, 2016. "A feasibility study of microgrids for reducing energy use and GHG emissions in an industrial application," Applied Energy, Elsevier, vol. 176(C), pages 138-148.
    6. Schuster, Christian Stefano, 2020. "Analytical framework for the assessment and modelling of multi-junction solar cells in the outdoors," Renewable Energy, Elsevier, vol. 152(C), pages 1367-1379.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.
    2. Ahmad Abuelrub & Osama Saadeh & Hussein M. K. Al-Masri, 2018. "Scenario Aggregation-Based Grid-Connected Photovoltaic Plant Design," Sustainability, MDPI, vol. 10(4), pages 1-13, April.
    3. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    4. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    5. Ying Chen & Krystel K. Castillo-Villar & Bing Dong, 2021. "Stochastic control of a micro-grid using battery energy storage in solar-powered buildings," Annals of Operations Research, Springer, vol. 303(1), pages 197-216, August.
    6. Wei, Wei & Liu, Feng & Wang, Jianhui & Chen, Laijun & Mei, Shengwei & Yuan, Tiejiang, 2016. "Robust environmental-economic dispatch incorporating wind power generation and carbon capture plants," Applied Energy, Elsevier, vol. 183(C), pages 674-684.
    7. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    8. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    9. Karimi, Hamid & Jadid, Shahram, 2020. "Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework," Energy, Elsevier, vol. 195(C).
    10. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    11. Anubhav Kumar Pandey & Vinay Kumar Jadoun & Jayalakshmi N. Sabhahit, 2022. "Real-Time Peak Valley Pricing Based Multi-Objective Optimal Scheduling of a Virtual Power Plant Considering Renewable Resources," Energies, MDPI, vol. 15(16), pages 1-30, August.
    12. Javidsharifi, Mahshid & Niknam, Taher & Aghaei, Jamshid & Mokryani, Geev, 2018. "Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices," Applied Energy, Elsevier, vol. 216(C), pages 367-381.
    13. Costa, Vinicius Braga Ferreira da & Bonatto, Benedito Donizeti, 2023. "Cutting-edge public policy proposal to maximize the long-term benefits of distributed energy resources," Renewable Energy, Elsevier, vol. 203(C), pages 357-372.
    14. Velik, Rosemarie & Nicolay, Pascal, 2014. "Grid-price-dependent energy management in microgrids using a modified simulated annealing triple-optimizer," Applied Energy, Elsevier, vol. 130(C), pages 384-395.
    15. Hocaoglu, Fatih Onur & Serttas, Fatih, 2017. "A novel hybrid (Mycielski-Markov) model for hourly solar radiation forecasting," Renewable Energy, Elsevier, vol. 108(C), pages 635-643.
    16. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.
    17. Zhongwen Li & Chuanzhi Zang & Peng Zeng & Haibin Yu, 2016. "Combined Two-Stage Stochastic Programming and Receding Horizon Control Strategy for Microgrid Energy Management Considering Uncertainty," Energies, MDPI, vol. 9(7), pages 1-16, June.
    18. Cui, Jia & Zhang, Ximing & Liu, Wei & Yan, Xinyue & Hu, Zhen & Li, Chaoran & Huang, Jingbo, 2024. "A novel trading optimization strategy of source-load bilateral thermoelectric spot based on industrial parks interior," Energy, Elsevier, vol. 302(C).
    19. Sharma, Sharmistha & Bhattacharjee, Subhadeep & Bhattacharya, Aniruddha, 2018. "Probabilistic operation cost minimization of Micro-Grid," Energy, Elsevier, vol. 148(C), pages 1116-1139.
    20. Lampropoulos, Ioannis & van den Broek, Machteld & van der Hoofd, Erik & Hommes, Klaas & van Sark, Wilfried, 2018. "A system perspective to the deployment of flexibility through aggregator companies in the Netherlands," Energy Policy, Elsevier, vol. 118(C), pages 534-551.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2328-:d:1392915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.