IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v233y2024ics0960148124012278.html
   My bibliography  Save this article

Multi-objective stochastic-robust based selection-allocation-operation cooperative optimization of rural integrated energy systems considering supply-demand multiple uncertainties

Author

Listed:
  • Wang, Jiangjiang
  • Zhao, Lei
  • Lu, Hao
  • Wei, Changqi

Abstract

The carbon neutrality goal places greater demands on integrated energy system (IES) in rural areas. In line with this trend, a multi-objective stochastic-robust based selection-allocation-operation cooperative optimization model is established for planning of rural IES in this paper. Firstly, this paper construct three typical IESs at three levels (user, township and user-township interaction) and make economic selection. Secondly, in order to coordinate the objectives of technology-economy-environment and solve the multiple uncertainties existing in the system, a multi-objective stochastic-robust planning model is proposed. In the model, the objective function introduces indicators such as total cost, primary energy resource efficiency and renewable energy consumption rate. Then constructing stochastic hierarchical scenarios to characterize the stochastic uncertainty of parameters in the time dimension. And introducing typical scenarios into the box sets which characterize the supply-demand sides uncertainty. Finally, a sensitivity analysis is performed to discuss the influence of robustness parameters and biogas prices. The annual total cost of the user-township interaction system is 53.8 % and 8.4 % lower than that of the other two systems, respectively. And from the allocation results of selected system, primary energy resource efficiency is 0.57, total cost is 1.81 × 106 USD and renewable energy consumption rate is 99.46 %. In addition, from the operation results, it is analyzed that the output of the equipment is perfectly balanced with the user's load. Finally, it is obtained by sensitivity analysis that uncertainty budget and biogas price have an impact on the selection of discrete equipment, the capacity of continuous equipment and the total cost. And the optimal capacity of the system under different situations is given.

Suggested Citation

  • Wang, Jiangjiang & Zhao, Lei & Lu, Hao & Wei, Changqi, 2024. "Multi-objective stochastic-robust based selection-allocation-operation cooperative optimization of rural integrated energy systems considering supply-demand multiple uncertainties," Renewable Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:renene:v:233:y:2024:i:c:s0960148124012278
    DOI: 10.1016/j.renene.2024.121159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124012278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Onishi, Viviani C. & Antunes, Carlos H. & Fraga, Eric S. & Cabezas, Heriberto, 2019. "Stochastic optimization of trigeneration systems for decision-making under long-term uncertainty in energy demands and prices," Energy, Elsevier, vol. 175(C), pages 781-797.
    2. Wang, Pengya & Wang, Jianxiao & Jin, Ruiyang & Li, Gengyin & Zhou, Ming & Xia, Qing, 2022. "Integrating biogas in regional energy systems to achieve near-zero carbon emissions," Applied Energy, Elsevier, vol. 322(C).
    3. Ahmed, Eihab E.E. & Demirci, Alpaslan & Tercan, Said Mirza, 2023. "Optimal sizing and techno-enviro-economic feasibility assessment of solar tracker-based hybrid energy systems for rural electrification in Sudan," Renewable Energy, Elsevier, vol. 205(C), pages 1057-1070.
    4. Lu, Qing & Lü, Shuaikang & Leng, Yajun & Zhang, Zhixin, 2020. "Optimal household energy management based on smart residential energy hub considering uncertain behaviors," Energy, Elsevier, vol. 195(C).
    5. Gital Durmaz, Yeşim & Bilgen, Bilge, 2020. "Multi-objective optimization of sustainable biomass supply chain network design," Applied Energy, Elsevier, vol. 272(C).
    6. Zhu, Xi & Zeng, Bo & Dong, Houqi & Liu, Jiaomin, 2020. "An interval-prediction based robust optimization approach for energy-hub operation scheduling considering flexible ramping products," Energy, Elsevier, vol. 194(C).
    7. Ma, Tengfei & Wu, Junyong & Hao, Liangliang & Lee, Wei-Jen & Yan, Huaguang & Li, Dezhi, 2018. "The optimal structure planning and energy management strategies of smart multi energy systems," Energy, Elsevier, vol. 160(C), pages 122-141.
    8. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Amir Mansouri, Seyed & Jurado, Francisco, 2022. "Day-ahead scheduling of 100% isolated communities under uncertainties through a novel stochastic-robust model," Applied Energy, Elsevier, vol. 328(C).
    9. Li, Yang & Han, Meng & Shahidehpour, Mohammad & Li, Jiazheng & Long, Chao, 2023. "Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response," Applied Energy, Elsevier, vol. 335(C).
    10. Anderson, Jeffrey & Rode, David & Zhai, Haibo & Fischbeck, Paul, 2021. "Reducing carbon dioxide emissions beyond 2030: Time to shift U.S. power-sector focus," Energy Policy, Elsevier, vol. 148(PA).
    11. Das, Saborni & Basu, Mousumi, 2020. "Day-ahead optimal bidding strategy of microgrid with demand response program considering uncertainties and outages of renewable energy resources," Energy, Elsevier, vol. 190(C).
    12. Najafi, Arsalan & Homaee, Omid & Jasiński, Michał & Pourakbari-Kasmaei, Mahdi & Lehtonen, Matti & Leonowicz, Zbigniew, 2023. "Participation of hydrogen-rich energy hubs in day-ahead and regulation markets: A hybrid stochastic-robust model," Applied Energy, Elsevier, vol. 339(C).
    13. Tan, Jin & Wu, Qiuwei & Hu, Qinran & Wei, Wei & Liu, Feng, 2020. "Adaptive robust energy and reserve co-optimization of integrated electricity and heating system considering wind uncertainty," Applied Energy, Elsevier, vol. 260(C).
    14. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Haifeng & Yuan, Lingling & Wang, Weijun & Song, Minghao, 2024. "Distributionally robust optimization for pumped storage power station capacity expanding based on underwater hydrogen storage introduction," Energy, Elsevier, vol. 310(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Liu, Zhiqiang & Cui, Yanping & Wang, Jiaqiang & Yue, Chang & Agbodjan, Yawovi Souley & Yang, Yu, 2022. "Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties," Energy, Elsevier, vol. 254(PC).
    3. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Shi, Lin & Li, Bingkang, 2023. "TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties," Energy, Elsevier, vol. 284(C).
    4. Lu, Xi & Fan, Xinzhe & Lu, Shuai & Bu, Siqi & Xia, Shiwei, 2024. "An operation model for integrated electricity and heat systems emphasizing modeling of both networks and uncertainties," Applied Energy, Elsevier, vol. 370(C).
    5. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    6. Li, Yuxuan & Zhang, Junli & Wu, Xiao & Shen, Jiong & Maréchal, François, 2023. "Stochastic-robust planning optimization method based on tracking-economy extreme scenario tradeoff for CCHP multi-energy system," Energy, Elsevier, vol. 283(C).
    7. Qiu, Haifeng & Vinod, Ashwin & Lu, Shuai & Gooi, Hoay Beng & Pan, Guangsheng & Zhang, Suhan & Veerasamy, Veerapandiyan, 2023. "Decentralized mixed-integer optimization for robust integrated electricity and heat scheduling," Applied Energy, Elsevier, vol. 350(C).
    8. Guan, Zhimin & Lu, Chunyan & Li, Yiming & Wang, Jiangjiang, 2023. "Chance-constrained optimization of hybrid solar combined cooling, heating and power system considering energetic, economic, environmental, and flexible performances," Renewable Energy, Elsevier, vol. 212(C), pages 908-920.
    9. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    10. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    11. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    12. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    13. Li, Weiwei & Qian, Tong & Zhao, Wei & Huang, Wenwei & Zhang, Yin & Xie, Xuehua & Tang, Wenhu, 2023. "Decentralized optimization for integrated electricity–heat systems with data center based energy hub considering communication packet loss," Applied Energy, Elsevier, vol. 350(C).
    14. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    15. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    16. Liu, Jiejie & Li, Yao & Ma, Yanan & Qin, Ruomu & Meng, Xianyang & Wu, Jiangtao, 2023. "Two-layer multiple scenario optimization framework for integrated energy system based on optimal energy contribution ratio strategy," Energy, Elsevier, vol. 285(C).
    17. Cosgrove, Paul & Roulstone, Tony & Zachary, Stan, 2023. "Intermittency and periodicity in net-zero renewable energy systems with storage," Renewable Energy, Elsevier, vol. 212(C), pages 299-307.
    18. Baohong Jin & Zhichao Liu & Yichuan Liao, 2023. "Exploring the Impact of Regional Integrated Energy Systems Performance by Energy Storage Devices Based on a Bi-Level Dynamic Optimization Model," Energies, MDPI, vol. 16(6), pages 1-21, March.
    19. Wu, Xiao & Yang, Lihua & Zheng, Bingle, 2024. "Joint capacity configuration and demand response optimization of integrated energy system considering economic and dynamic control performance," Energy, Elsevier, vol. 301(C).
    20. Jin, Baohong, 2023. "Impact of renewable energy penetration in power systems on the optimization and operation of regional distributed energy systems," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:233:y:2024:i:c:s0960148124012278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.