IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124015465.html
   My bibliography  Save this article

Thermochemical analysis of premixed ammonia/biogas flames in a model gas turbine swirl combustion system

Author

Listed:
  • Zhao, Xu
  • Ng, Jo-Han
  • Mong, Guo Ren
  • Mashruk, Syed
  • Lee, Chew Tin
  • Fang, Xueliang
  • Wong, Keng Yinn
  • Ooi, Jong Boon
  • Valera-Medina, Agustin
  • Chiong, Meng-Choung

Abstract

This study examined the premixed NH3/biogas combustion at near stoichiometric using an experimentally validated numerical method. Raising the NH3 wt.% in NH3/CH4 combustion at φ = 0.8 brought up the average reaction temperature (Tavg) due to heat retention. Intensified by CO2 addition, Tavg in NH3/biogas increased by a factor of 1.2 compared to NH3/CH4. At φ = 1.1, higher NH3 and CO2 wt.% reduced Tavg. The local Damköhler number (Da) was reduced marginally in the absence of CO2 as φ increased from 0.8 to 1.1. Conversely, local Da grew considerably in the presence of CO2 and was particularly sensitive to variations in the excess air ratio. Increased NH3 wt.% promoted NO emission, primarily via N + OH → NO + H and H + HCNO → CH2 + NO pathways. NH3/biogas produced more NO than NH3/CH4 from φ = 0.9 to 1.1, but as φ approached 1.1, NO is generally lowered. N2O is produced mainly by NH + NO → N2O + H. Fuel-lean operation generally results in a higher N2O than fuel-rich operation. The NH3/biogas combustion at φ = 0.8 is a potential clean fuel solution in lowering NO emissions, as compared to NH3/CH4 combustion.

Suggested Citation

  • Zhao, Xu & Ng, Jo-Han & Mong, Guo Ren & Mashruk, Syed & Lee, Chew Tin & Fang, Xueliang & Wong, Keng Yinn & Ooi, Jong Boon & Valera-Medina, Agustin & Chiong, Meng-Choung, 2024. "Thermochemical analysis of premixed ammonia/biogas flames in a model gas turbine swirl combustion system," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124015465
    DOI: 10.1016/j.renene.2024.121478
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124015465
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121478?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124015465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.