IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124015313.html
   My bibliography  Save this article

Analysis of hydropower plant guide bearing vibrations by machine learning based identification of steady operations

Author

Listed:
  • Lang, Xiao
  • Nilsson, Håkan
  • Mao, Wengang

Abstract

A novel machine learning based method is proposed to automatically identify steady operations of hydropower plants (HPPs) in this study. The approach applies the Pruned Exact Linear Time (PELT) algorithm to obtain the number of segments (steady operations & transients) for each working period by multiple change points detection in the HPP power output time series. An adaptive Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, capable of self-adjusting its hyperparameters according to the PELT-defined segments, is then deployed for identification of steady operations. This adaptive characteristic can outperform other clustering methods in diverse HPP operational patterns through extensive comparison based on a three-year HPP measurement dataset and statistical tests. Based on the identification from the proposed method, the statistics of the HPP's upper guide bearing vibrations during both steady operations and transients before and after a known maintenance are compared, and an apparent bearing performance degradation can be revealed during signals from steady operations. It indicates that the proposed method can help to plan optimal bearing maintenance based on data of steady operations, and shows the potential for other practical applications for predictive maintenance of the different components of the HPP.

Suggested Citation

  • Lang, Xiao & Nilsson, Håkan & Mao, Wengang, 2024. "Analysis of hydropower plant guide bearing vibrations by machine learning based identification of steady operations," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124015313
    DOI: 10.1016/j.renene.2024.121463
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124015313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124015313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.