IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5670-d1519965.html
   My bibliography  Save this article

Evaluating Deep Learning Networks Versus Hybrid Network for Smart Monitoring of Hydropower Plants

Author

Listed:
  • Fatemeh Hajimohammadali

    (Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, 56122 Pisa, Italy)

  • Emanuele Crisostomi

    (Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, 56122 Pisa, Italy)

  • Mauro Tucci

    (Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, 56122 Pisa, Italy)

  • Nunzia Fontana

    (Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, 56122 Pisa, Italy)

Abstract

One of the main goals of the International Energy Agency (IEA) is to manage and utilize clean energy to achieve net zero emissions by 2050. Hydropower plants can significantly contribute to this goal as they are vital components of the global energy infrastructure, providing a clean, safe, and sustainable power source. Accordingly, there is great interest in developing methods to prevent errors and anomalies and ensure full operational availability. With modern hydropower plants equipped with sensors that capture extensive data, machine learning algorithms utilizing these data to detect and predict anomalies have gained research attention. This paper demonstrates that deep learning algorithms are particularly powerful in predicting time series. Three well-known deep learning networks are examined and compared to previous approaches, followed by the introduction of a new, innovative hybrid network. Using real-world data from two hydropower plants, the hybrid model outperforms individual deep learning models by achieving more accurate fault detection, reducing false positives, offering early fault prediction, and identifying faults several weeks before occurrence. These results showcase the hybrid network’s potential to enhance maintenance planning, reduce downtime, and improve operational efficiency in energy systems.

Suggested Citation

  • Fatemeh Hajimohammadali & Emanuele Crisostomi & Mauro Tucci & Nunzia Fontana, 2024. "Evaluating Deep Learning Networks Versus Hybrid Network for Smart Monitoring of Hydropower Plants," Energies, MDPI, vol. 17(22), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5670-:d:1519965
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5670/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5670/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Betti, Alessandro & Crisostomi, Emanuele & Paolinelli, Gianluca & Piazzi, Antonio & Ruffini, Fabrizio & Tucci, Mauro, 2021. "Condition monitoring and predictive maintenance methodologies for hydropower plants equipment," Renewable Energy, Elsevier, vol. 171(C), pages 246-253.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murad, C.A. & Bellinello, M.M. & Silva, A.J. & Netto, A. Caminada & de Souza, G.F.M. & Nabeta, S.I., 2022. "A novel methodology employed for ranking and consolidating performance indicators in holding companies with multiple power plants based on multi-criteria decision-making method," Operations Research Perspectives, Elsevier, vol. 9(C).
    2. Lenio Prado & Marcelo Fonseca & José V. Bernardes & Mateus G. Santos & Edson C. Bortoni & Guilherme S. Bastos, 2023. "Forecast of Operational Downtime of the Generating Units for Sediment Cleaning in the Water Intakes: A Case of the Jirau Hydropower Plant," Energies, MDPI, vol. 16(17), pages 1-20, September.
    3. Yanfei Liu & Wentao Wang & Wenjun Wang & Chengbo Yu & Bowen Mao & Dongfang Shang & Yucong Duan, 2023. "Purpose-Driven Evaluation of Operation and Maintenance Efficiency and Safety Based on DIKWP," Sustainability, MDPI, vol. 15(17), pages 1-22, August.
    4. Aldemar Leguizamon-Perilla & Juan S. Rodriguez-Bernal & Laidi Moralez-Cruz & Nidia Isabel Farfán-Martinez & César Nieto-Londoño & Rafael E. Vásquez & Ana Escudero-Atehortua, 2023. "Digitalisation and Modernisation of Hydropower Operating Facilities to Support the Colombian Energy Mix Flexibility," Energies, MDPI, vol. 16(7), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5670-:d:1519965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.