IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v83y2015icp828-836.html
   My bibliography  Save this article

Experimental investigations of a model Francis turbine during shutdown at synchronous speed

Author

Listed:
  • Trivedi, Chirag
  • Gandhi, Bhupendra K.
  • Cervantes, Michel J.
  • Dahlhaug, Ole Gunnar

Abstract

Hydraulic turbines are widely used to meet the real-time electricity demand at moderate to low cost. Intermittency in the power grid due to high penetration of wind and solar power has raised significant concerns for grid stability and reliability. The intermittency results in an increase of the start–stop cycles of hydraulic turbines. Each cycle induces fatigue to the turbine runner because it experiences unsteady pressure loading of high amplitude. The turbine runner accelerates freely due to an instantaneous transition into no load during shutdown. The amplitude of the unsteady pressure pulsation increases as the runner accelerates. To investigate the unsteady pressure pulsation, a shutdown slightly different from the normal shutdown was performed. Guide vanes were closed completely before the generator was disconnected from the load. The runner was spinning at constant angular speed through the generator. Amplitudes of the pressure pulsations were 20% and 35% lower in the vaneless space and the runner, respectively, compared to the normal shutdown of the turbine.

Suggested Citation

  • Trivedi, Chirag & Gandhi, Bhupendra K. & Cervantes, Michel J. & Dahlhaug, Ole Gunnar, 2015. "Experimental investigations of a model Francis turbine during shutdown at synchronous speed," Renewable Energy, Elsevier, vol. 83(C), pages 828-836.
  • Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:828-836
    DOI: 10.1016/j.renene.2015.05.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811500405X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.05.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduard Doujak & Anton Maly & Julian Unterluggauer & Franz Haller & Michael Maier & Christian Blasbichler & Simon Stadler, 2023. "Fatigue Strength Analysis of a Prototype Francis Turbine in a Multilevel Lifetime Assessment Procedure Part III: Instrumentation and Prototype Site Measurement," Energies, MDPI, vol. 16(16), pages 1-39, August.
    2. Yu, Zhi-Feng & Wang, Wen-Quan & Yan, Yan & Liu, Xing-Shun, 2021. "Energy loss evaluation in a Francis turbine under overall operating conditions using entropy production method," Renewable Energy, Elsevier, vol. 169(C), pages 982-999.
    3. Feng, Jianjun & Ge, Zhenguo & Zhu, Guojun & Tian, Diyang & Wu, Guangkuan & Luo, Xingqi, 2023. "Runaway characteristics of a prototype bulb turbine considering upper and lower reservoirs based on lattice Boltzmann method," Renewable Energy, Elsevier, vol. 202(C), pages 773-783.
    4. Goyal, Rahul & Gandhi, Bhupendra K., 2018. "Review of hydrodynamics instabilities in Francis turbine during off-design and transient operations," Renewable Energy, Elsevier, vol. 116(PA), pages 697-709.
    5. Xijun Zhou & Yongjin Ye & Xianyu Zhang & Xiuwei Yang & Haijun Wang, 2022. "Refined 1D–3D Coupling for High-Frequency Forced Vibration Analysis in Hydraulic Systems," Energies, MDPI, vol. 15(16), pages 1-18, August.
    6. Liu, Quan-Zhong & Su, Wen-Tao & Li, Xiao-Bin & Zhang, Ya-Ning, 2020. "Dynamic characteristics of load rejection process in a reversible pump-turbine," Renewable Energy, Elsevier, vol. 146(C), pages 1922-1931.
    7. Zeng, Wei & Yang, Jiandong & Yang, Weijia, 2016. "Instability analysis of pumped-storage stations under no-load conditions using a parameter-varying model," Renewable Energy, Elsevier, vol. 90(C), pages 420-429.
    8. Trivedi, Chirag & Agnalt, Einar & Dahlhaug, Ole Gunnar, 2018. "Experimental study of a Francis turbine under variable-speed and discharge conditions," Renewable Energy, Elsevier, vol. 119(C), pages 447-458.
    9. Chirag Trivedi & Michel J. Cervantes & B. K. Gandhi, 2016. "Investigation of a High Head Francis Turbine at Runaway Operating Conditions," Energies, MDPI, vol. 9(3), pages 1-22, March.
    10. Xing Zhou & Changzheng Shi & Kazuyoshi Miyagawa & Hegao Wu & Jinhong Yu & Zhu Ma, 2020. "Investigation of Pressure Fluctuation and Pulsating Hydraulic Axial Thrust in Francis Turbines," Energies, MDPI, vol. 13(7), pages 1-16, April.
    11. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    12. Ivan Litvinov & Daniil Suslov & Evgeny Gorelikov & Sergey Shtork, 2021. "Experimental Study of Transient Flow Regimes in a Model Hydroturbine Draft Tube," Energies, MDPI, vol. 14(5), pages 1-13, February.
    13. Zeng, Wei & Yang, Jiandong & Tang, Renbo & Yang, Weijia, 2016. "Extreme water-hammer pressure during one-after-another load shedding in pumped-storage stations," Renewable Energy, Elsevier, vol. 99(C), pages 35-44.
    14. Li, Deyou & Fu, Xiaolong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Liu, Shuhong & Wei, Xianzhu, 2019. "Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 26-46.
    15. Trivedi, Chirag & Agnalt, Einar & Dahlhaug, Ole Gunnar, 2017. "Investigations of unsteady pressure loading in a Francis turbine during variable-speed operation," Renewable Energy, Elsevier, vol. 113(C), pages 397-410.
    16. Wencheng Guo & Yang Liu & Fangle Qu & Xinyu Xu, 2020. "A Review of Critical Stable Sectional Areas for the Surge Tanks of Hydropower Stations," Energies, MDPI, vol. 13(23), pages 1-25, December.
    17. Salehi, Saeed & Nilsson, Håkan & Lillberg, Eric & Edh, Nicolas, 2021. "An in-depth numerical analysis of transient flow field in a Francis turbine during shutdown," Renewable Energy, Elsevier, vol. 179(C), pages 2322-2347.
    18. Shi, Lijian & Zhang, Wenpeng & Jiao, Haifeng & Tang, Fangping & Wang, Li & Sun, Dandan & Shi, Wei, 2020. "Numerical simulation and experimental study on the comparison of the hydraulic characteristics of an axial-flow pump and a full tubular pump," Renewable Energy, Elsevier, vol. 153(C), pages 1455-1464.
    19. Daqing Zhou & Huixiang Chen & Jie Zhang & Shengwen Jiang & Jia Gui & Chunxia Yang & An Yu, 2019. "Numerical Study on Flow Characteristics in a Francis Turbine during Load Rejection," Energies, MDPI, vol. 12(4), pages 1-15, February.
    20. Fawaz E. Alsaadi & Amirreza Yasami & Hajid Alsubaie & Ahmed Alotaibi & Hadi Jahanshahi, 2022. "Control of a Hydraulic Generator Regulating System Using Chebyshev-Neural-Network-Based Non-Singular Fast Terminal Sliding Mode Method," Mathematics, MDPI, vol. 11(1), pages 1-18, December.
    21. Fu, Xiaolong & Li, Deyou & Wang, Hongjie & Zhang, Guanghui & Li, Zhenggui & Wei, Xianzhu, 2018. "Influence of the clearance flow on the load rejection process in a pump-turbine," Renewable Energy, Elsevier, vol. 127(C), pages 310-321.
    22. Zhou, Xing & Wu, Hegao & Cheng, Li & Huang, Quanshui & Shi, Changzheng, 2023. "A new draft tube shape optimisation methodology of introducing inclined conical diffuser in hydraulic turbine," Energy, Elsevier, vol. 265(C).
    23. Trivedi, Chirag & Cervantes, Michel J., 2017. "Fluid-structure interactions in Francis turbines: A perspective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 87-101.
    24. Fu, Shifeng & Zheng, Yuan & Kan, Kan & Chen, Huixiang & Han, Xingxing & Liang, Xiaoling & Liu, Huiwen & Tian, Xiaoqing, 2020. "Numerical simulation and experimental study of transient characteristics in an axial flow pump during start-up," Renewable Energy, Elsevier, vol. 146(C), pages 1879-1887.
    25. Zhiyan Yang & Zirui Liu & Yongguang Cheng & Xiaoxi Zhang & Ke Liu & Linsheng Xia, 2020. "Differences of Flow Patterns and Pressure Pulsations in Four Prototype Pump-Turbines during Runaway Transient Processes," Energies, MDPI, vol. 13(20), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:83:y:2015:i:c:p:828-836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.