IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v130y2019icp25-31.html
   My bibliography  Save this article

Solar photovoltaic based air cooling system for vehicles

Author

Listed:
  • Pang, Wei
  • Yu, Hongwen
  • Zhang, Yongzhe
  • Yan, Hui

Abstract

The conventional automotive air conditioning system was driven by internal combustion engine or power battery, which increased the oil consumption and vehicle carbon emission. In this study, a direct current (DC) air conditioning system powered by solar photovoltaic module (PV) has been designed to solve the problem of temperature increasing inside the vehicle when stops in the broiling summer. The purpose of this work is to design a whole DC air conditioning system with R134a as refrigerant, replacing the power source with solar energy. The result shows that the environmental condition in the vehicle has obviously improved by the DC air conditioning system, meeting the requirements of human bodies. In addition, in the experiment, the minimum refrigerating capacity should be ∼1500 W, maintaining the thermal equilibrium inside the vehicle under the sun blazing, when the vehicle stops and no person inside. The work will prompt further research of solar energy and development of solar electric vehicle air conditioning system.

Suggested Citation

  • Pang, Wei & Yu, Hongwen & Zhang, Yongzhe & Yan, Hui, 2019. "Solar photovoltaic based air cooling system for vehicles," Renewable Energy, Elsevier, vol. 130(C), pages 25-31.
  • Handle: RePEc:eee:renene:v:130:y:2019:i:c:p:25-31
    DOI: 10.1016/j.renene.2018.06.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118306931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.06.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Bin-Juine & Hou, Tung-Fu & Hsu, Po-Chien & Lin, Tse-Han & Chen, Yan-Tze & Chen, Chi-Wen & Li, Kang & Lee, K.Y., 2016. "Design of direct solar PV driven air conditioner," Renewable Energy, Elsevier, vol. 88(C), pages 95-101.
    2. Zhang, Zutao & Zhang, Xingtian & Chen, Weiwu & Rasim, Yagubov & Salman, Waleed & Pan, Hongye & Yuan, Yanping & Wang, Chunbai, 2016. "A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle," Applied Energy, Elsevier, vol. 178(C), pages 177-188.
    3. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    4. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    5. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    6. Zhou, Guanghui & Ou, Xunmin & Zhang, Xiliang, 2013. "Development of electric vehicles use in China: A study from the perspective of life-cycle energy consumption and greenhouse gas emissions," Energy Policy, Elsevier, vol. 59(C), pages 875-884.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    2. Huang, Yuewu & Zhao, Yonggang, 2023. "Performance assessment of a perovskite solar cell-driven thermionic refrigerator hybrid system," Energy, Elsevier, vol. 266(C).
    3. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    4. Hani Al-Rawashdeh & Ahmad O. Hasan & Hazem A. Al-Shakhanbeh & Mujahed Al-Dhaifallah & Mohamed R. Gomaa & Hegazy Rezk, 2021. "Investigation of the Effect of Solar Ventilation on the Cabin Temperature of Vehicles Parked under the Sun," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    5. Nick Rigogiannis & Ioannis Bogatsis & Christos Pechlivanis & Anastasios Kyritsis & Nick Papanikolaou, 2023. "Moving towards Greener Road Transportation: A Review," Clean Technol., MDPI, vol. 5(2), pages 1-25, June.
    6. Oh, Myeongchan & Kim, Sung-Min & Park, Hyeong-Dong, 2020. "Estimation of photovoltaic potential of solar bus in an urban area: Case study in Gwanak, Seoul, Korea," Renewable Energy, Elsevier, vol. 160(C), pages 1335-1348.
    7. Kim, Hanjin & Ku, Jiyoon & Kim, Sung-Min & Park, Hyeong-Dong, 2022. "A new GIS-based algorithm to estimate photovoltaic potential of solar train: Case study in Gyeongbu line, Korea," Renewable Energy, Elsevier, vol. 190(C), pages 713-729.
    8. Cheng-Jung Yang & Tzu-Chun Yang & Po-Tuan Chen & K. David Huang, 2019. "An Innovative Design of Regional Air Conditioning to Increase Automobile Cabin Energy Efficiency," Energies, MDPI, vol. 12(12), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Hongye & Qi, Lingfei & Zhang, Xingtian & Zhang, Zutao & Salman, Waleed & Yuan, Yanping & Wang, Chunbai, 2017. "A portable renewable solar energy-powered cooling system based on wireless power transfer for a vehicle cabin," Applied Energy, Elsevier, vol. 195(C), pages 334-343.
    2. Zhang, Tingsheng & Kong, Lingji & Zhu, Zhongyin & Wu, Xiaoping & Li, Hai & Zhang, Zutao & Yan, Jinyue, 2024. "An electromagnetic vibration energy harvesting system based on series coupling input mechanism for freight railroads," Applied Energy, Elsevier, vol. 353(PA).
    3. Thomas Bröthaler & Marcus Rennhofer & Daniel Brandl & Thomas Mach & Andreas Heinz & Gusztáv Újvári & Helga C. Lichtenegger & Harald Rennhofer, 2021. "Performance Analysis of a Facade-Integrated Photovoltaic Powered Cooling System," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    4. Han, Kedong & Ji, Jie & Cai, Jingyong & Gao, Yuhe & Zhang, Feng & Uddin, Md Muin & Song, Zhiying, 2021. "Experimental and numerical investigation on a novel photovoltaic direct-driven ice storage air-conditioning system," Renewable Energy, Elsevier, vol. 172(C), pages 514-528.
    5. Haris, Muhammad & Hasan, Muhammad Noman & Qin, Shiyin, 2021. "Early and robust remaining useful life prediction of supercapacitors using BOHB optimized Deep Belief Network," Applied Energy, Elsevier, vol. 286(C).
    6. Lin, Boqiang & Wu, Wei, 2021. "The impact of electric vehicle penetration: A recursive dynamic CGE analysis of China," Energy Economics, Elsevier, vol. 94(C).
    7. Sivaneasan, Balakrishnan & Kandasamy, Nandha Kumar & Lim, May Lin & Goh, Kwang Ping, 2018. "A new demand response algorithm for solar PV intermittency management," Applied Energy, Elsevier, vol. 218(C), pages 36-45.
    8. Moss, R.W. & Henshall, P. & Arya, F. & Shire, G.S.F. & Hyde, T. & Eames, P.C., 2018. "Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels," Applied Energy, Elsevier, vol. 216(C), pages 588-601.
    9. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    10. Lincoln Bowen & Jordi Vinolas & José Luis Olazagoitia, 2019. "Design and Potential Power Recovery of Two Types of Energy Harvesting Shock Absorbers," Energies, MDPI, vol. 12(24), pages 1-19, December.
    11. Manjunath, Archana & Gross, George, 2017. "Towards a meaningful metric for the quantification of GHG emissions of electric vehicles (EVs)," Energy Policy, Elsevier, vol. 102(C), pages 423-429.
    12. Rama Curiel, José Adrián & Thakur, Jagruti, 2022. "A novel approach for Direct Load Control of residential air conditioners for Demand Side Management in developing regions," Energy, Elsevier, vol. 258(C).
    13. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    14. Hector Beltran & Pablo Ayuso & Emilio Pérez, 2020. "Lifetime Expectancy of Li-Ion Batteries used for Residential Solar Storage," Energies, MDPI, vol. 13(3), pages 1-18, January.
    15. Alammar, Ahmed A. & Rezk, Ahmed & Alaswad, Abed & Fernando, Julia & Olabi, A.G. & Decker, Stephanie & Ruhumuliza, Joseph & Gasana, Quénan, 2022. "The technical, economic, and environmental feasibility of a bioheat-driven adsorption cooling system for food cold storing: A case study of Rwanda," Energy, Elsevier, vol. 258(C).
    16. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin & Yue, Wen Long & Zou, Xin, 2019. "Multi-criteria analysis of policies for implementing clean energy vehicles in China," Energy Policy, Elsevier, vol. 129(C), pages 826-840.
    17. Ren, Xiao & Li, Jing & Hu, Mingke & Pei, Gang & Jiao, Dongsheng & Zhao, Xudong & Ji, Jie, 2019. "Feasibility of an innovative amorphous silicon photovoltaic/thermal system for medium temperature applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Opoku, Richard & Obeng, George Y. & Adjei, Eunice A. & Davis, Francis & Akuffo, Fred O., 2020. "Integrated system efficiency in reducing redundancy and promoting residential renewable energy in countries without net-metering: A case study of a SHS in Ghana," Renewable Energy, Elsevier, vol. 155(C), pages 65-78.
    19. Eroğlu, Fatih & Kurtoğlu, Mehmet & Eren, Ahmet & Vural, Ahmet Mete, 2023. "Multi-objective control strategy for multilevel converter based battery D-STATCOM with power quality improvement," Applied Energy, Elsevier, vol. 341(C).
    20. Li, Yanfei & O'Neill, Zheng & Zhang, Liang & Chen, Jianli & Im, Piljae & DeGraw, Jason, 2021. "Grey-box modeling and application for building energy simulations - A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:130:y:2019:i:c:p:25-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.