IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v190y2022icp713-729.html
   My bibliography  Save this article

A new GIS-based algorithm to estimate photovoltaic potential of solar train: Case study in Gyeongbu line, Korea

Author

Listed:
  • Kim, Hanjin
  • Ku, Jiyoon
  • Kim, Sung-Min
  • Park, Hyeong-Dong

Abstract

Photovoltaic (PV) power generation is considered a forward-looking industry. Nevertheless, solar energy is yet to become a direct source of electric power for mobile vehicles. Recently, there have been cases where solar panels were attached to the roof of trains to generate electricity. In this study, a method was devised to estimate the power generated by a solar train with panels. The solar irradiance on the roof of a moving train was calculated with respect to the location and time of the train, as well as the shadow effects of obstacles. The preprocessing of the input data required for calculating solar irradiation was executed through Geographic Information Systems, and finally, an algorithm for calculating solar irradiation and power generation was developed. With the algorithm-embodied Graphical User Interface, when spatial information of various routes is provided, the PV potential for each route can be calculated. Experimental calculations were conducted on the Gyeongbu line in Korea. During train operation, 122.15 MWh of power can be generated per year, with a reduction of 56 tons of CO2. The results of this preliminary evaluation are expected to accelerate the growth of the solar train industry.

Suggested Citation

  • Kim, Hanjin & Ku, Jiyoon & Kim, Sung-Min & Park, Hyeong-Dong, 2022. "A new GIS-based algorithm to estimate photovoltaic potential of solar train: Case study in Gyeongbu line, Korea," Renewable Energy, Elsevier, vol. 190(C), pages 713-729.
  • Handle: RePEc:eee:renene:v:190:y:2022:i:c:p:713-729
    DOI: 10.1016/j.renene.2022.03.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122004141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pang, Wei & Yu, Hongwen & Zhang, Yongzhe & Yan, Hui, 2019. "Solar photovoltaic based air cooling system for vehicles," Renewable Energy, Elsevier, vol. 130(C), pages 25-31.
    2. Jinyoung Song & Yosoon Choi, 2016. "Analysis of the Potential for Use of Floating Photovoltaic Systems on Mine Pit Lakes: Case Study at the Ssangyong Open-Pit Limestone Mine in Korea," Energies, MDPI, vol. 9(2), pages 1-13, February.
    3. Oh, Myeongchan & Kim, Sung-Min & Park, Hyeong-Dong, 2020. "Estimation of photovoltaic potential of solar bus in an urban area: Case study in Gwanak, Seoul, Korea," Renewable Energy, Elsevier, vol. 160(C), pages 1335-1348.
    4. Shravanth Vasisht, M. & Vashista, G.A. & Srinivasan, J. & Ramasesha, Sheela K., 2017. "Rail coaches with rooftop solar photovoltaic systems: A feasibility study," Energy, Elsevier, vol. 118(C), pages 684-691.
    5. Celik, Berk & Karatepe, Engin & Silvestre, Santiago & Gokmen, Nuri & Chouder, Aissa, 2015. "Analysis of spatial fixed PV arrays configurations to maximize energy harvesting in BIPV applications," Renewable Energy, Elsevier, vol. 75(C), pages 534-540.
    6. Li Ji & Zhenwei Yu & Jing Ma & Limin Jia & Fuwei Ning, 2020. "The Potential of Photovoltaics to Power the Railway System in China," Energies, MDPI, vol. 13(15), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baek, Jieun & Choi, Yosoon, 2023. "Optimal installation and operation planning of parking spaces for solar-powered electric vehicles using hemispherical images," Renewable Energy, Elsevier, vol. 219(P1).
    2. Žalik, Mitja & Mongus, Domen & Lukač, Niko, 2024. "High-resolution spatiotemporal assessment of solar potential from remote sensing data using deep learning," Renewable Energy, Elsevier, vol. 222(C).
    3. Jieun Baek & Yosoon Choi, 2022. "Comparative Study on Shading Database Construction for Urban Roads Using 3D Models and Fisheye Images for Efficient Operation of Solar-Powered Electric Vehicles," Energies, MDPI, vol. 15(21), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Teng & Longkai Li & Yajun Jiang & Ruifeng Shi, 2022. "A Review of Clean Energy Exploitation for Railway Transportation Systems and Its Enlightenment to China," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    2. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    4. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    5. Mariko Almeida Carneiro & Diogo Da Fonseca-Soares & Lucian Hendyo Max Pereira & Angel Firmín Ramos-Ridao, 2022. "An Approach for Water and Energy Savings in Public Buildings: A Case Study of Brazilian Rail Company," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    6. Pan, Yu & Liu, Fengwei & Jiang, Ruijin & Tu, Zhiwen & Zuo, Lei, 2019. "Modeling and onboard test of an electromagnetic energy harvester for railway cars," Applied Energy, Elsevier, vol. 250(C), pages 568-581.
    7. Kenji Araki & Yasuyuki Ota & Akira Nagaoka & Kensuke Nishioka, 2023. "3D Solar Irradiance Model for Non-Uniform Shading Environments Using Shading (Aperture) Matrix Enhanced by Local Coordinate System," Energies, MDPI, vol. 16(11), pages 1-20, May.
    8. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo, 2020. "Enhancing trains envelope – heating, ventilation, and air conditioning systems: A new dynamic simulation approach for energy, economic, environmental impact and thermal comfort analyses," Energy, Elsevier, vol. 204(C).
    9. Mokhinabonu Mardonova & Yosoon Choi, 2019. "Assessment of Photovoltaic Potential of Mining Sites in Uzbekistan," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    10. Ruifeng Shi & Yuqin Gao & Jin Ning & Keyi Tang & Limin Jia, 2023. "Research on Highway Self-Consistent Energy System Planning with Uncertain Wind and Photovoltaic Power Output," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    11. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    12. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    13. Park, Hyo Seon & Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Jeong, Kwangbok, 2016. "A finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind," Applied Energy, Elsevier, vol. 179(C), pages 211-227.
    14. Choi, Yosoon & Song, Jinyoung, 2017. "Review of photovoltaic and wind power systems utilized in the mining industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1386-1391.
    15. Jieun Baek & Yosoon Choi, 2022. "An Experimental Study on Performance Evaluation of Shading Matrix to Select Optimal Parking Space for Solar-Powered Electric Vehicles," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    16. Spiliotis, Konstantinos & Gonçalves, Juliana E. & Saelens, Dirk & Baert, Kris & Driesen, Johan, 2020. "Electrical system architectures for building-integrated photovoltaics: A comparative analysis using a modelling framework in Modelica," Applied Energy, Elsevier, vol. 261(C).
    17. Qamar Navid & Ahmed Hassan & Abbas Ahmad Fardoun & Rashad Ramzan & Abdulrahman Alraeesi, 2021. "Fault Diagnostic Methodologies for Utility-Scale Photovoltaic Power Plants: A State of the Art Review," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    18. Jangwon Suh & Yonghae Jang & Yosoon Choi, 2019. "Comparison of Electric Power Output Observed and Estimated from Floating Photovoltaic Systems: A Case Study on the Hapcheon Dam, Korea," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
    19. Tian, B. & Loonen, R.C.G.M. & Bognár, Á. & Hensen, J.L.M., 2022. "Impacts of surface model generation approaches on raytracing-based solar potential estimation in urban areas," Renewable Energy, Elsevier, vol. 198(C), pages 804-824.
    20. Azraff Bin Rozmi, Mohd Daniel & Thirunavukkarasu, Gokul Sidarth & Jamei, Elmira & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Stojcevski, Alex & Horan, Ben, 2019. "Role of immersive visualization tools in renewable energy system development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:190:y:2022:i:c:p:713-729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.