IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124014083.html
   My bibliography  Save this article

Enhancement effect of semicoke waste heat on energy conservation and hydrogen production from biomass gasification

Author

Listed:
  • Zhang, Junxia
  • Zhong, Junfeng
  • Yang, Li
  • Wang, Zehua
  • Chen, Dongrui
  • Wang, Qiaoli

Abstract

Key approaches to alleviating global warming and curbing fossil fuel depletion involve various industrial energy-conservation technologies and carbon dioxide (CO2) emission reduction methods. The production of hydrogen (H2)-rich gas from inexpensive and readily available biomass, as an alternative energy source, is becoming increasingly promising. However, this application faces challenges such as high energy consumption and low gas quality. In this study, the waste heat released by semicoke production from lignite gasification and CO2 from exhaust gas were utilized to gasify biomass. This approach aims to save energy in biomass gasification and use CO2 in exhaust gas to improve the H2 content in biogas. A simulation was conducted to recover semicoke waste heat by combining a suspension tube with CO2 flow to generate steam and high-temperature CO2, which were then simultaneously sent into a gasifier to produce H2 through biomass gasification. The results revealed that the rate of semicoke waste heat recovery exceeded 90 %. The yield of steam and the rate of waste heat recovery improved with increasing mass flow rate of semicoke and then slightly decreased with increasing steam pressure and CO2 mass flow rate. The yield of H2 increased with the semicoke mass flow rate and steam pressure. The rate of energy conservation ranged from 15 % to 239 %, peaking at a CO2 mass flow rate of 0.09 kg/s. Compared with the case without waste heat recovery, the economic benefits increased from 12 to 28 times.

Suggested Citation

  • Zhang, Junxia & Zhong, Junfeng & Yang, Li & Wang, Zehua & Chen, Dongrui & Wang, Qiaoli, 2024. "Enhancement effect of semicoke waste heat on energy conservation and hydrogen production from biomass gasification," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014083
    DOI: 10.1016/j.renene.2024.121340
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124014083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaroslaw Krzywanski & Waqar Muhammad Ashraf & Tomasz Czakiert & Marcin Sosnowski & Karolina Grabowska & Anna Zylka & Anna Kulakowska & Dorian Skrobek & Sandra Mistal & Yunfei Gao, 2022. "CO 2 Capture by Virgin Ivy Plants Growing Up on the External Covers of Houses as a Rapid Complementary Route to Achieve Global GHG Reduction Targets," Energies, MDPI, vol. 15(5), pages 1-8, February.
    2. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    3. Huang, Jintao & Lyu, Sha & Han, He & Wang, Yanjiang & Sun, Haoyang & Su, Jingtao & Liu, Yidong & Min, Yonggang & Sun, Dazhi, 2022. "Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags," Energy, Elsevier, vol. 252(C).
    4. Sun, Yongqi & Chen, Jingjing & Zhang, Zuotai, 2019. "Biomass gasification using the waste heat from high temperature slags in a mixture of CO2 and H2O," Energy, Elsevier, vol. 167(C), pages 688-697.
    5. AlNouss, Ahmed & Parthasarathy, Prakash & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish & McKay, Gordon, 2020. "Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS," Applied Energy, Elsevier, vol. 261(C).
    6. Berrueco, C. & Recari, J. & Güell, B. Matas & Alamo, G. del, 2014. "Pressurized gasification of torrefied woody biomass in a lab scale fluidized bed," Energy, Elsevier, vol. 70(C), pages 68-78.
    7. Umeki, Kentaro & Yamamoto, Kouichi & Namioka, Tomoaki & Yoshikawa, Kunio, 2010. "High temperature steam-only gasification of woody biomass," Applied Energy, Elsevier, vol. 87(3), pages 791-798, March.
    8. Zheng, Bin & Sun, Peng & Liu, Yongqi & Zhao, Qiang, 2018. "Heat transfer of calcined petroleum coke and heat exchange tube for calcined petroleum coke waste heat recovery," Energy, Elsevier, vol. 155(C), pages 56-65.
    9. Vikram, Shruti & Rosha, Pali & Kumar, Sandeep & Mahajani, Sanjay, 2022. "Thermodynamic analysis and parametric optimization of steam-CO2 based biomass gasification system using Aspen PLUS," Energy, Elsevier, vol. 241(C).
    10. Sun, Kai & Tseng, Chen-Ting & Shan-Hill Wong, David & Shieh, Shyan-Shu & Jang, Shi-Shang & Kang, Jia-Lin & Hsieh, Wei-Dong, 2015. "Model predictive control for improving waste heat recovery in coke dry quenching processes," Energy, Elsevier, vol. 80(C), pages 275-283.
    11. Wang, Lili & Zhao, Jun & Teng, Junfeng & Dong, Shilong & Wang, Yinglong & Xiang, Shuguang & Sun, Xiaoyan, 2022. "Study on an energy-saving process for separation ethylene elycol mixture through heat-pump, heat-integration and ORC driven by waste-heat," Energy, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Jianhua & Wu, Fujun & Chen, Fangzhou & Huang, Weijia & Cai, Yezheng & Jiang, Juantao, 2022. "Entire process simulation and thermodynamic analysis of the catalytic gasification for synthetic natural gas from biomass," Energy, Elsevier, vol. 255(C).
    2. Zhang, Kai & Du, Shiqi & Sun, Peng & Zheng, Bin & Liu, Yongqi & Shen, Yingkai & Chang, RunZe & Han, Xiaobiao, 2021. "The effect of particle arrangement on the direct heat extraction of regular packed bed with numerical simulation," Energy, Elsevier, vol. 225(C).
    3. Wei, Rufei & Meng, Kangzheng & Long, Hongming & Xu, ChunbaoCharles, 2024. "Biomass metallurgy: A sustainable and green path to a carbon-neutral metallurgical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Li, Shenghui & Sun, Xiaojing & Liu, Linlin & Du, Jian, 2023. "A full process optimization of methanol production integrated with co-generation based on the co-gasification of biomass and coal," Energy, Elsevier, vol. 267(C).
    5. Chu, Genyun & Fan, Yingjie & Zhang, Dawei & Gao, Minglin & Yu, Jianhua & Xie, Jianhui & Yang, Qingchun, 2022. "A highly efficient and environmentally friendly approach for in-situ utilization of CO2 from coal to ethylene glycol plant," Energy, Elsevier, vol. 256(C).
    6. Zhu, Xianqing & Xu, Mian & Hu, Shiyang & Xia, Ao & Huang, Yun & Luo, Zhang & Xue, Xiao & Zhou, Yao & Zhu, Xun & Liao, Qiang, 2024. "A novel spent LiNixCoyMn1−x−yO2 battery-modified mesoporous Al2O3 catalyst for H2-rich syngas production from catalytic steam co-gasification of pinewood sawdust and polyethylene," Applied Energy, Elsevier, vol. 367(C).
    7. Po-Chih Kuo & Wei Wu, 2014. "Design, Optimization and Energetic Efficiency of Producing Hydrogen-Rich Gas from Biomass Steam Gasification," Energies, MDPI, vol. 8(1), pages 1-17, December.
    8. Xing Tian & Jian Yang & Zhigang Guo & Qiuwang Wang & Bengt Sunden, 2020. "Numerical Study of Heat Transfer in Gravity-Driven Particle Flow around Tubes with Different Shapes," Energies, MDPI, vol. 13(8), pages 1-15, April.
    9. Huang, Jintao & Lyu, Sha & Han, He & Wang, Yanjiang & Sun, Haoyang & Su, Jingtao & Liu, Yidong & Min, Yonggang & Sun, Dazhi, 2022. "Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags," Energy, Elsevier, vol. 252(C).
    10. Ansari, Khursheed B. & Gaikar, Vilas G., 2019. "Investigating production of hydrocarbon rich bio-oil from grassy biomass using vacuum pyrolysis coupled with online deoxygenation of volatile products over metallic iron," Renewable Energy, Elsevier, vol. 130(C), pages 305-318.
    11. Fiammetta Rita Bianchi & Arianna Baldinelli & Linda Barelli & Giovanni Cinti & Emilio Audasso & Barbara Bosio, 2020. "Multiscale Modeling for Reversible Solid Oxide Cell Operation," Energies, MDPI, vol. 13(19), pages 1-16, September.
    12. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    13. Brage Rugstad Knudsen & Hanne Kauko & Trond Andresen, 2019. "An Optimal-Control Scheme for Coordinated Surplus-Heat Exchange in Industry Clusters," Energies, MDPI, vol. 12(10), pages 1-22, May.
    14. Lu, Yupeng & Xuan, Yimin & Teng, Liang & Liu, Jingrui & Wang, Busheng, 2024. "A cascaded thermochemical energy storage system enabling performance enhancement of concentrated solar power plants," Energy, Elsevier, vol. 288(C).
    15. Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.
    16. Guo, Zhigang & Zhang, Shang & Tian, Xing & Yang, Jian & Wang, Qiuwang, 2020. "Numerical investigation of tube oscillation in gravity-driven granular flow with heat transfer by discrete element method," Energy, Elsevier, vol. 207(C).
    17. Umeki, Kentaro & Namioka, Tomoaki & Yoshikawa, Kunio, 2012. "Analysis of an updraft biomass gasifier with high temperature steam using a numerical model," Applied Energy, Elsevier, vol. 90(1), pages 38-45.
    18. Wu, Zhicong & Zhang, Ziyue & Xu, Gang & Ge, Shiyu & Xue, Xiaojun & Chen, Heng, 2024. "Thermodynamic and economic analysis of a new methanol synthesis system coupled with a biomass integrated gasification combined cycle," Energy, Elsevier, vol. 300(C).
    19. Trubetskaya, Anna & Souihi, Nabil & Umeki, Kentaro, 2019. "Categorization of tars from fast pyrolysis of pure lignocellulosic compounds at high temperature," Renewable Energy, Elsevier, vol. 141(C), pages 751-759.
    20. Nguyen, Nhut M. & Alobaid, Falah & May, Jan & Peters, Jens & Epple, Bernd, 2020. "Experimental study on steam gasification of torrefied woodchips in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 202(C).

    More about this item

    Keywords

    Waste heat recovery; Biomass gasification; Energy conservation; H2; CO2;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.