IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v207y2020ics0360544220313104.html
   My bibliography  Save this article

Numerical investigation of tube oscillation in gravity-driven granular flow with heat transfer by discrete element method

Author

Listed:
  • Guo, Zhigang
  • Zhang, Shang
  • Tian, Xing
  • Yang, Jian
  • Wang, Qiuwang

Abstract

In this paper, the gravity-driven granular flow was investigated by discrete element method (DEM) in the moving bed heat exchanger with tube oscillation. The particle update, the particle contact and the heat transfer were all discussed around tube out-wall. Moreover, the heat resistance analysis was developed to reveal the heat transfer mechanisms. It was found that, tube oscillation can significantly improve heat transfer coefficients (h). The relative growth of locally optimal h varies from 59.2% to 22.6%, when the outlet velocity (u) ranges from 0.65 mm/s to 6 mm/s. In details, the heat transfer can be enhanced by tube oscillation due to the smoother flow in the upstream, the denser contact in the downstream and the more particle mixing inside the flow. However, the particle separation aside the tube has a negative effect simultaneously. Therefore, there is a best frequency (f) to optimize h. The frequency is inversely proportional to the amplitude (DA) and decreases with u. Furthermore, the larger DA can increase the best h. In the present study, the optimal h was obtained as f locates between 3 and 5 Hz at DA > 1 mm.

Suggested Citation

  • Guo, Zhigang & Zhang, Shang & Tian, Xing & Yang, Jian & Wang, Qiuwang, 2020. "Numerical investigation of tube oscillation in gravity-driven granular flow with heat transfer by discrete element method," Energy, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313104
    DOI: 10.1016/j.energy.2020.118203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220313104
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Yan-Hui & Zhang, Zhen & Qiu, Lin & Zhang, Xin-Xin, 2019. "Heat recovery process modelling of semi-molten blast furnace slag in a moving bed using XDEM," Energy, Elsevier, vol. 186(C).
    2. Zheng, Bin & Sun, Peng & Liu, Yongqi & Zhao, Qiang, 2018. "Heat transfer of calcined petroleum coke and heat exchange tube for calcined petroleum coke waste heat recovery," Energy, Elsevier, vol. 155(C), pages 56-65.
    3. Zheng, Ying & Cai, Jiu-ju & Dong, Hui & Feng, Jun-sheng & Liu, Jing-yu, 2019. "Experimental investigation of volumetric exergy transfer coefficient in vertical moving bed for sinter waste heat recovery," Energy, Elsevier, vol. 167(C), pages 428-439.
    4. Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Xing & Jia, Haonan & Zhang, Jiayue & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2023. "Heat transfer characteristic of particle flow around the out-wall of different geometries," Energy, Elsevier, vol. 280(C).
    2. Xing Tian & Jian Yang & Zhigang Guo & Qiuwang Wang, 2021. "Numerical Investigation of Gravity-Driven Granular Flow around the Vertical Plate: Effect of Pin-Fin and Oscillation on the Heat Transfer," Energies, MDPI, vol. 14(8), pages 1-14, April.
    3. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    4. Zuo, Zhijian & Liu, Tian & Li, Weihong & Xiao, Hong & Lin, Taiping & Gong, Shuguang & Zhang, Jianping, 2023. "A study of particle flow in a ribbon reactor: Effect of ribbon configuration on mixing and heat transfer performance," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing Tian & Jian Yang & Zhigang Guo & Qiuwang Wang & Bengt Sunden, 2020. "Numerical Study of Heat Transfer in Gravity-Driven Particle Flow around Tubes with Different Shapes," Energies, MDPI, vol. 13(8), pages 1-15, April.
    2. Tian, Xing & Jia, Haonan & Zhang, Jiayue & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2023. "Heat transfer characteristic of particle flow around the out-wall of different geometries," Energy, Elsevier, vol. 280(C).
    3. Ahmadi, Mohammad Mahdi & Keyhani, Alireza & Rosen, Marc A. & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Towards sustainable net-zero districts using the extended exergy accounting concept," Renewable Energy, Elsevier, vol. 197(C), pages 747-764.
    4. Zuo, Zhijian & Liu, Tian & Li, Weihong & Xiao, Hong & Lin, Taiping & Gong, Shuguang & Zhang, Jianping, 2023. "A study of particle flow in a ribbon reactor: Effect of ribbon configuration on mixing and heat transfer performance," Energy, Elsevier, vol. 284(C).
    5. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Qiu, Ziyang & Yuan, Yuxing & He, Jianfei & Li, Yingnan & Wang, Yisong & Du, Tao, 2021. "A comprehensive assessment on material, exergy and emission networks for the integrated iron and steel industry," Energy, Elsevier, vol. 235(C).
    6. Xie, Huaqing & Li, Rongquan & Yu, Zhenyu & Wang, Zhengyu & Yu, Qingbo & Qin, Qin, 2020. "Combined steam/dry reforming of bio-oil for H2/CO syngas production with blast furnace slag as heat carrier," Energy, Elsevier, vol. 200(C).
    7. Lv, Yi-Wen & Zhu, Xun & Wang, Hong & Dai, Mao-Lin & Ding, Yu-Dong & Wu, Jun-Jun & Liao, Qiang, 2021. "A hybrid cooling system to enable adhesion-free heat recovery from centrifugal granulated slag particles," Applied Energy, Elsevier, vol. 303(C).
    8. Junpeng Fu & Jiuju Cai, 2020. "Study of Heat Transfer and the Hydrodynamic Performance of Gas–Solid Heat Transfer in a Vertical Sinter Cooling Bed Using the CFD-Taguchi-Grey Relational Analysis Method," Energies, MDPI, vol. 13(9), pages 1-30, May.
    9. Zhang, Kai & Du, Shiqi & Sun, Peng & Zheng, Bin & Liu, Yongqi & Shen, Yingkai & Chang, RunZe & Han, Xiaobiao, 2021. "The effect of particle arrangement on the direct heat extraction of regular packed bed with numerical simulation," Energy, Elsevier, vol. 225(C).
    10. Petar Sabev Varbanov & Hon Huin Chin & Alexandra-Elena Plesu Popescu & Stanislav Boldyryev, 2020. "Thermodynamics-Based Process Sustainability Evaluation," Energies, MDPI, vol. 13(9), pages 1-28, April.
    11. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
    12. Wu, Junjun & Tan, Yu & Li, Peng & Wang, Hong & Zhu, Xun & Liao, Qiang, 2022. "Centrifugal-Granulation-Assisted thermal energy recovery towards low-carbon blast furnace slag treatment: State of the art and future challenges," Applied Energy, Elsevier, vol. 325(C).
    13. Hu, Zhengbiao & He, Dongfeng & Zhao, Hongbo, 2023. "Multi-objective optimization of energy distribution in steel enterprises considering both exergy efficiency and energy cost," Energy, Elsevier, vol. 263(PB).
    14. Qiu, Ziyang & Yue, Qiang & Yan, Tianyi & Wang, Qi & Sun, Jingchao & Yuan, Yuxing & Che, Zichang & Wang, Yisong & Du, Tao, 2023. "Gas utilization optimization and exergy analysis of hydrogen metallurgical shaft furnace," Energy, Elsevier, vol. 263(PC).
    15. Gong, Xuzhong & Zhang, Tong & Zhang, Junqiang & Wang, Zhi & Liu, Junhao & Cao, Jianwei & Wang, Chuan, 2022. "Recycling and utilization of calcium carbide slag - current status and new opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Cheng, Zhilong & Tan, Zhoutuo & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2020. "Recent progress in sustainable and energy-efficient technologies for sinter production in the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Ali, Muhammad Khurram & Nasir, Alishba & Abbasi, Kainat Jamil & Sajid, Muhammad, 2024. "A comparative multidimensional evaluation of parameters and alternatives for transformation of sustainable cement production in Pakistan," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    18. Liu, J. & Goel, A. & Kua, H.W. & Wang, C.H. & Peng, Y.H., 2021. "Evaluating the urban metabolism sustainability of municipal solid waste management system: An extended exergy accounting and indexing perspective," Applied Energy, Elsevier, vol. 300(C).
    19. Roozbeh Nia, Ali & Awasthi, Anjali & Bhuiyan, Nadia, 2023. "Integrate exergy costs and carbon reduction policy in order to optimize the sustainability development of coal supply chains in uncertain conditions," International Journal of Production Economics, Elsevier, vol. 257(C).
    20. Liu, Jianrui & Kua, Harn Wei & Wang, Chi-Hwa & Tong, Yen Wah & Zhang, Jingxin & Peng, Yinghong, 2023. "Extended exergy accounting theory to design waste-to-energy management system under uncertainty," Energy, Elsevier, vol. 278(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.