IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v80y2015icp275-283.html
   My bibliography  Save this article

Model predictive control for improving waste heat recovery in coke dry quenching processes

Author

Listed:
  • Sun, Kai
  • Tseng, Chen-Ting
  • Shan-Hill Wong, David
  • Shieh, Shyan-Shu
  • Jang, Shi-Shang
  • Kang, Jia-Lin
  • Hsieh, Wei-Dong

Abstract

CDQ (coke dry quenching) is a widely used method for recovering waste heat in the steel industry. We have developed a novel, data driven modeling approach and model based control for a CDQ unit to increase steam generation in a cogeneration system. First, the correlation between steam generation and TCGB (the temperature of circulation gas entering the associated boiler) was confirmed. Subsequently, a nonlinear variable selection method was employed to build models of TCGB and the carbon monoxide concentration of the circulation gas. The models obtained were implemented to achieve MPC (model predictive control) for regulating the supplementary gas to maximize steam generation in an existing steelmaking plant. Upon comparison of the original process and the proposed modified operation, the effectiveness of the implementation of MPC was justified. The results showed that steam generation was increased by 7%. In our approach, the large amount of available operational data stored electronically was used to establish the models. Modification of the established system is not required. Taking into account that no capital investment is required, the process improvement is remarkable in terms of its return on investment.

Suggested Citation

  • Sun, Kai & Tseng, Chen-Ting & Shan-Hill Wong, David & Shieh, Shyan-Shu & Jang, Shi-Shang & Kang, Jia-Lin & Hsieh, Wei-Dong, 2015. "Model predictive control for improving waste heat recovery in coke dry quenching processes," Energy, Elsevier, vol. 80(C), pages 275-283.
  • Handle: RePEc:eee:energy:v:80:y:2015:i:c:p:275-283
    DOI: 10.1016/j.energy.2014.11.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214013395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.11.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hovgaard, Tobias Gybel & Larsen, Lars F.S. & Edlund, Kristian & Jørgensen, John Bagterp, 2012. "Model predictive control technologies for efficient and flexible power consumption in refrigeration systems," Energy, Elsevier, vol. 44(1), pages 105-116.
    2. Zhang, Jianhua & Zhou, Yeli & Wang, Rui & Xu, Jinliang & Fang, Fang, 2014. "Modeling and constrained multivariable predictive control for ORC (Organic Rankine Cycle) based waste heat energy conversion systems," Energy, Elsevier, vol. 66(C), pages 128-138.
    3. Bisio, G. & Rubatto, G., 2000. "Energy saving and some environment improvements in coke-oven plants," Energy, Elsevier, vol. 25(3), pages 247-265.
    4. Lazar, Mircea & Pastravanu, Octavian, 2002. "A neural predictive controller for non-linear systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 60(3), pages 315-324.
    5. Hajimolana, S.A. & Tonekabonimoghadam, S.M. & Hussain, M.A. & Chakrabarti, M.H. & Jayakumar, N.S. & Hashim, M.A., 2013. "Thermal stress management of a solid oxide fuel cell using neural network predictive control," Energy, Elsevier, vol. 62(C), pages 320-329.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Xiaohong & Wang, Xinli & Li, Shaoyuan & Cai, Wenjian, 2016. "Energy-efficiency-oriented cascade control for vapor compression refrigeration cycle systems," Energy, Elsevier, vol. 116(P1), pages 1006-1019.
    2. Liu, Changxin & Xie, Zhihui & Sun, Fengrui & Chen, Lingen, 2017. "Exergy analysis and optimization of coking process," Energy, Elsevier, vol. 139(C), pages 694-705.
    3. Brage Rugstad Knudsen & Hanne Kauko & Trond Andresen, 2019. "An Optimal-Control Scheme for Coordinated Surplus-Heat Exchange in Industry Clusters," Energies, MDPI, vol. 12(10), pages 1-22, May.
    4. Zhang, Kai & Du, Shiqi & Sun, Peng & Zheng, Bin & Liu, Yongqi & Shen, Yingkai & Chang, RunZe & Han, Xiaobiao, 2021. "The effect of particle arrangement on the direct heat extraction of regular packed bed with numerical simulation," Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Xiaobing & Liu, Xiangjie & Lee, Kwang Y., 2015. "Nonlinear multivariable hierarchical model predictive control for boiler-turbine system," Energy, Elsevier, vol. 93(P1), pages 309-322.
    2. Biegel, Benjamin & Westenholz, Mikkel & Hansen, Lars Henrik & Stoustrup, Jakob & Andersen, Palle & Harbo, Silas, 2014. "Integration of flexible consumers in the ancillary service markets," Energy, Elsevier, vol. 67(C), pages 479-489.
    3. Shi, Yao & Zhang, Zhiming & Chen, Xiaoqiang & Xie, Lei & Liu, Xueqin & Su, Hongye, 2023. "Data-Driven model identification and efficient MPC via quasi-linear parameter varying representation for ORC waste heat recovery system," Energy, Elsevier, vol. 271(C).
    4. Wu, Xialai & Chen, Junghui & Xie, Lei, 2019. "Fast economic nonlinear model predictive control strategy of Organic Rankine Cycle for waste heat recovery: Simulation-based studies," Energy, Elsevier, vol. 180(C), pages 520-534.
    5. Johansson, Maria T. & Söderström, Mats, 2011. "Options for the Swedish steel industry – Energy efficiency measures and fuel conversion," Energy, Elsevier, vol. 36(1), pages 191-198.
    6. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    7. Gonçalves, Ivo & Gomes, Álvaro & Henggeler Antunes, Carlos, 2019. "Optimizing the management of smart home energy resources under different power cost scenarios," Applied Energy, Elsevier, vol. 242(C), pages 351-363.
    8. Carreiro, Andreia M. & Jorge, Humberto M. & Antunes, Carlos Henggeler, 2017. "Energy management systems aggregators: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1160-1172.
    9. van Biert, L. & Godjevac, M. & Visser, K. & Aravind, P.V., 2019. "Dynamic modelling of a direct internal reforming solid oxide fuel cell stack based on single cell experiments," Applied Energy, Elsevier, vol. 250(C), pages 976-990.
    10. Cao, Shuang & Xu, Jinliang & Miao, Zheng & Liu, Xiulong & Zhang, Ming & Xie, Xuewang & Li, Zhi & Zhao, Xiaoli & Tang, Guihua, 2019. "Steady and transient operation of an organic Rankine cycle power system," Renewable Energy, Elsevier, vol. 133(C), pages 284-294.
    11. Qin, Shiyue & Chang, Shiyan, 2017. "Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery," Energy, Elsevier, vol. 141(C), pages 435-450.
    12. Jiang, Jianhua & Shen, Tan & Deng, Zhonghua & Fu, Xiaowei & Li, Jian & Li, Xi, 2018. "High efficiency thermoelectric cooperative control of a stand-alone solid oxide fuel cell system with an air bypass valve," Energy, Elsevier, vol. 152(C), pages 13-26.
    13. Lin, Runze & Luo, Yangyang & Wu, Xialai & Chen, Junghui & Huang, Biao & Su, Hongye & Xie, Lei, 2024. "Surrogate empowered Sim2Real transfer of deep reinforcement learning for ORC superheat control," Applied Energy, Elsevier, vol. 356(C).
    14. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    15. Wan, Xin & Xu, Feng & Luo, Xiong-Lin, 2022. "Economic optimization for process transition based on redundant control variables in the framework of zone model predictive control," Energy, Elsevier, vol. 241(C).
    16. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
    17. Barelli, L. & Bidini, G. & Ottaviano, A., 2016. "Solid oxide fuel cell modelling: Electrochemical performance and thermal management during load-following operation," Energy, Elsevier, vol. 115(P1), pages 107-119.
    18. Park, Joonho & Lee, Yeageun & Chang, Ikwhang & Cho, Gu Young & Ji, Sanghoon & Lee, Wonyoung & Cha, Suk Won, 2016. "Atomic layer deposition of yttria-stabilized zirconia thin films for enhanced reactivity and stability of solid oxide fuel cells," Energy, Elsevier, vol. 116(P1), pages 170-176.
    19. Li, Jing & Pei, Gang & Ji, Jie & Bai, Xiaoman & Li, Pengcheng & Xia, Lijun, 2014. "Design of the ORC (organic Rankine cycle) condensation temperature with respect to the expander characteristics for domestic CHP (combined heat and power) applications," Energy, Elsevier, vol. 77(C), pages 579-590.
    20. Jie, Hao & Liao, Jiawei & Zhu, Guozhu & Hong, Weirong, 2024. "Nonlinear model predictive control of direct internal reforming solid oxide fuel cells via PDAE-constrained dynamic optimization," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:80:y:2015:i:c:p:275-283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.