IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v234y2024ics096014812401317x.html
   My bibliography  Save this article

Effect of fluid direction and reactor structure on heat storage performance of Ca(OH)2/CaO based on shell-tube thermochemical energy storage device

Author

Listed:
  • Wang, Wei
  • Yang, Jianyu
  • Lougou, Bachirou Guene
  • Huang, Yudong
  • Shuai, Yong

Abstract

The flow direction of the heat transfer fluid (HTF) and reactor structure inside the shell-tube heat exchanger has a significant impact on the heat transfer performance of the shell-tube reaction device. In this study, a comprehensive 3D multi-physics coupled model of a shell-tube fixed bed thermochemical energy storage (TCES) device is developed. The investigation delves into the influence of HTF flow direction and reactor structural design on a plethora of critical parameters including temperature distribution, steam pressure distribution, reaction extent, reaction time, heat transfer power, heat transfer efficiency, and heat storage efficiency within the reactor. The result indicates that the flow direction of HTF has an impact on the homogeneity of the reaction in the tube, and the countercurrent and concurrent flow can realize the gradient and homogeneous occurrence of the reaction in the tube, respectively. Both lessening the outer diameter of the device and increasing the diameter of the heat storage material filling tube can improve the average heat exchange efficiency and the average heat storage efficiency. Compared with the basic case (Basic case A), the optimized (Case D) heat storage device volume decreased by 13.38 %, the energy stored amount increased by 24.14 %, heat storage time shortened by 8.04 %, and heat storage efficiency increased by 32.14 %. Additionally, the inlet temperature and velocity still have an obvious influence on the thermal performance of the reactor after structural optimization. These research findings guide for improving the heat and mass transfer effect and working performance of the shell-tube fixed bed Ca(OH)2/CaO reactor.

Suggested Citation

  • Wang, Wei & Yang, Jianyu & Lougou, Bachirou Guene & Huang, Yudong & Shuai, Yong, 2024. "Effect of fluid direction and reactor structure on heat storage performance of Ca(OH)2/CaO based on shell-tube thermochemical energy storage device," Renewable Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:renene:v:234:y:2024:i:c:s096014812401317x
    DOI: 10.1016/j.renene.2024.121249
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812401317X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:234:y:2024:i:c:s096014812401317x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.