IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224006923.html
   My bibliography  Save this article

A comprehensive material and experimental investigation of a packed bed latent heat storage system based on waste foundry sand

Author

Listed:
  • Ahmad, Abdalqader
  • Anagnostopoulos, Argyrios
  • Navarro, M. Elena
  • Maksum, Yelaman
  • Sharma, Shivangi
  • Ding, Yulong

Abstract

The EU's industrial sector discards about 18.9% of its energy as waste heat, much of which has the potential for recovery. This study addresses the challenge by focusing on the advancement of latent heat thermal energy storage (LHTES) using phase change materials (PCMs) encapsulated within industrial waste foundry sand (WFS). WFS, a problematic by-product, is repurposed as a supportive matrix for NaNO3 and solar salt PCMs, tailored for effective integration into high-temperature industrial processes. The paper provides a thorough mechanical and thermal examination of the WFS-salt PCMs, highlighting their improved thermal stability, performance, and compatibility with direct thermal energy systems. The composite PCMs demonstrated melting points well-suited for industrial waste heat applications and achieved an energy density of 542.0 ± 8.3 kJ/kg for NaNO3 and 516.0 ± 4.5 kJ/kg for solar salt, An experimental cascade PBLHS, based on these CPCMs, with a capacity of 262 MJ, designed to mimic an industrial heat source at 450 °C, was systematically tested to assess its energy density and efficiency over repeated charging/discharging and free cooling cycles. Its overall system efficiency is found to be 68.5%. These findings position WFS-salt PCMs as a promising and environmentally beneficial approach to enhance industrial energy efficiency and utilisation.

Suggested Citation

  • Ahmad, Abdalqader & Anagnostopoulos, Argyrios & Navarro, M. Elena & Maksum, Yelaman & Sharma, Shivangi & Ding, Yulong, 2024. "A comprehensive material and experimental investigation of a packed bed latent heat storage system based on waste foundry sand," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006923
    DOI: 10.1016/j.energy.2024.130920
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Felix Regin, A. & Solanki, S.C. & Saini, J.S., 2009. "An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: Numerical investigation," Renewable Energy, Elsevier, vol. 34(7), pages 1765-1773.
    2. Siddique, Rafat & Noumowe, Albert, 2008. "Utilization of spent foundry sand in controlled low-strength materials and concrete," Resources, Conservation & Recycling, Elsevier, vol. 53(1), pages 27-35.
    3. Siddique, Rafat & Singh, Gurpreet, 2011. "Utilization of waste foundry sand (WFS) in concrete manufacturing," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 885-892.
    4. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    5. Bhagat, Kunal & Saha, Sandip K., 2016. "Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant," Renewable Energy, Elsevier, vol. 95(C), pages 323-336.
    6. Wang, Wei & He, Xibo & Hou, Yicheng & Qiu, Jun & Han, Dongmei & Shuai, Yong, 2021. "Thermal performance analysis of packed-bed thermal energy storage with radial gradient arrangement for phase change materials," Renewable Energy, Elsevier, vol. 173(C), pages 768-780.
    7. Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
    8. Peris, Bernardo & Navarro-Esbrí, Joaquín & Molés, Francisco & Mota-Babiloni, Adrián, 2015. "Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry," Energy, Elsevier, vol. 85(C), pages 534-542.
    9. Jiang, Feng & Zhang, Lingling & She, Xiaohui & Li, Chuan & Cang, Daqiang & Liu, Xianglei & Xuan, Yimin & Ding, Yulong, 2020. "Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Wang, Wei & He, Xibo & Shuai, Yong & Qiu, Jun & Hou, Yicheng & Pan, Qinghui, 2022. "Experimental study on thermal performance of a novel medium-high temperature packed-bed latent heat storage system containing binary nitrate," Applied Energy, Elsevier, vol. 309(C).
    11. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2018. "System-level performance optimization of molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 226(C), pages 225-239.
    12. Mao, Qianjun & Zhang, Yamei, 2020. "Thermal energy storage performance of a three-PCM cascade tank in a high-temperature packed bed system," Renewable Energy, Elsevier, vol. 152(C), pages 110-119.
    13. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials," Applied Energy, Elsevier, vol. 247(C), pages 374-388.
    14. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2017. "Cyclic thermal characterization of a molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 195(C), pages 761-773.
    15. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    16. Abdelsalam, M.Y. & Teamah, H.M. & Lightstone, M.F. & Cotton, J.S., 2020. "Hybrid thermal energy storage with phase change materials for solar domestic hot water applications: Direct versus indirect heat exchange systems," Renewable Energy, Elsevier, vol. 147(P1), pages 77-88.
    17. Wu, Ming & Xu, Chao & He, Ya-Ling, 2014. "Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules," Applied Energy, Elsevier, vol. 121(C), pages 184-195.
    18. Li, Ming-Jia & Jin, Bo & Ma, Zhao & Yuan, Fan, 2018. "Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material," Applied Energy, Elsevier, vol. 221(C), pages 1-15.
    19. Nallusamy, N. & Sampath, S. & Velraj, R., 2007. "Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources," Renewable Energy, Elsevier, vol. 32(7), pages 1206-1227.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anagnostopoulos, Argyrios & Xenitopoulos, Theofilos & Ding, Yulong & Seferlis, Panos, 2024. "An integrated machine learning and metaheuristic approach for advanced packed bed latent heat storage system design and optimization," Energy, Elsevier, vol. 297(C).
    2. Wang, Wei & Shuai, Yong & He, Xibo & Hou, Yicheng & Qiu, Jun & Huang, Yudong, 2023. "Influence of tank-to-particle diameter ratio on thermal storage performance of random packed-bed with spherical macro-encapsulated phase change materials," Energy, Elsevier, vol. 282(C).
    3. Wang, Wei & He, Xibo & Shuai, Yong & Qiu, Jun & Hou, Yicheng & Pan, Qinghui, 2022. "Experimental study on thermal performance of a novel medium-high temperature packed-bed latent heat storage system containing binary nitrate," Applied Energy, Elsevier, vol. 309(C).
    4. ELSihy, ELSaeed Saad & Cai, Changrui & Li, Zhenpeng & Du, Xiaoze & Wang, Zuyuan, 2024. "Performance investigation on the cascaded packed bed thermal energy storage system with encapsulated nano-enhanced phase change materials for high-temperature applications," Energy, Elsevier, vol. 293(C).
    5. Lv, Pengfei & Liu, Lanlan & Dong, Hongsheng & Lei, Guangping & He, Ya-Ling, 2024. "Charging behavior of packed-bed thermal energy storage systems in medium and low temperature applications," Applied Energy, Elsevier, vol. 373(C).
    6. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    7. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials," Applied Energy, Elsevier, vol. 247(C), pages 374-388.
    8. Ma, Zhao & Li, Ming-Jia & Zhang, K. Max & Yuan, Fan, 2021. "Novel designs of hybrid thermal energy storage system and operation strategies for concentrated solar power plant," Energy, Elsevier, vol. 216(C).
    9. de Gracia, Alvaro & Cabeza, Luisa F., 2017. "Numerical simulation of a PCM packed bed system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1055-1063.
    10. ELSihy, ELSaeed Saad & Mokhtar, Omar & Xu, Chao & Du, Xiaoze & Adel, Mohamed, 2023. "Cyclic performance characterization of a high-temperature thermal energy storage system packed with rock/slag pebbles granules combined with encapsulated phase change materials," Applied Energy, Elsevier, vol. 331(C).
    11. ELSihy, ELSaeed Saad & Wang, Xiaohui & Xu, Chao & Du, Xiaoze, 2021. "Numerical investigation on simultaneous charging and discharging process of molten-salt packed-bed thermocline storage tank employing in CSP plants," Renewable Energy, Elsevier, vol. 172(C), pages 1417-1432.
    12. Wang, Wei & He, Xibo & Hou, Yicheng & Qiu, Jun & Han, Dongmei & Shuai, Yong, 2021. "Thermal performance analysis of packed-bed thermal energy storage with radial gradient arrangement for phase change materials," Renewable Energy, Elsevier, vol. 173(C), pages 768-780.
    13. Mao, Qianjun & Cao, Wenlong, 2023. "Effect of variable capsule size on energy storage performances in a high-temperature three-layered packed bed system," Energy, Elsevier, vol. 273(C).
    14. Wang, Wei & Shuai, Yong & Qiu, Jun & He, Xibo & Hou, Yicheng, 2022. "Effect of steady-state and unstable-state inlet boundary on the thermal performance of packed-bed latent heat storage system integrated with concentrating solar collectors," Renewable Energy, Elsevier, vol. 183(C), pages 251-266.
    15. Gao, Long & Gegentana, & Liu, Zhongze & Sun, Baizhong & Che, Deyong & Li, Shaohua, 2020. "Multi-objective optimization of thermal performance of packed bed latent heat thermal storage system based on response surface method," Renewable Energy, Elsevier, vol. 153(C), pages 669-680.
    16. Yu, Cheng & Liu, Feifan & Liu, Xiangdong & He, Lin & Zhang, Chengbin & Chen, Yongping, 2024. "High-power-density miniaturized packed-bed thermal energy storage unit via phase change material capsules," Applied Energy, Elsevier, vol. 375(C).
    17. Hou, Yicheng & Qiu, Jun & Wang, Wei & He, Xibo & Ayyub, Mubashar & Shuai, Yong, 2022. "Preparation and performance improvement of chlorides/MgO ceramics shape-stabilized phase change materials with expanded graphite for thermal energy storage system," Applied Energy, Elsevier, vol. 316(C).
    18. He, Xibo & Wang, Wei & Shuai, Yong & Hou, Yicheng & Qiu, Jun, 2024. "Dynamic thermal performance analysis and experimental study of cascaded packed-bed latent thermal energy storage integrated solar trough collectors," Renewable Energy, Elsevier, vol. 232(C).
    19. Tang, Yong & Wang, Zhichao & Zhou, Jinzhi & Zeng, Chao & Lyu, Weihua & Lu, Lin & Yuan, Yanping, 2024. "Experimental study on the performance of packed-bed latent thermal energy storage system employing spherical capsules with hollow channels," Energy, Elsevier, vol. 293(C).
    20. Zhu, Yanlong & Lu, Jie & Yuan, Yuan & Wang, Fuqiang & Tan, Heping, 2020. "Effect of radiation on the effective thermal conductivity of encapsulated capsules containing high-temperature phase change materials," Renewable Energy, Elsevier, vol. 160(C), pages 676-685.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.