IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224034698.html
   My bibliography  Save this article

Thermochemical heat storage and material behavior of calcium hydroxide fine powder in a fluidized bed reactor

Author

Listed:
  • Jiang, L.
  • Yan, J.
  • Tian, X.K.
  • Zhao, C.Y.
  • Fan, Xianfeng

Abstract

The Ca(OH)2/CaO reaction has attracted much attention in thermochemical heat storage. However, commercial Ca(OH)2 is usually offered as a fine powder that tends to agglomerate in the fluidized bed and affects heat storage performance. The experimental study on these issues is incomplete. In this paper, a fluidized bed thermochemical heat storage test system is built to study the heat storage and release process of Ca(OH)2 fine powder. The experimental results indicate that the water vapor is the primary factor in agglomeration. The increase in heat storage temperature, fluidization velocity, and inlet water flow rate can all reduce reaction time. However, the effect of heat storage temperature on agglomeration is negligible. While a high fluidization velocity can alleviate the agglomeration, a high inlet water flow rate intensifies the agglomeration. The heat storage density decreases by about 12 % after 5 cycles owing to the material loss, while the agglomeration is trending upward. The specific surface area and specific pore volume decrease by 46.59 %, and 13.89 % respectively, which slows down the heat storage process. This work can serve as a reference for alleviating the agglomeration, as well as the operation and adjustment of the fluidized bed.

Suggested Citation

  • Jiang, L. & Yan, J. & Tian, X.K. & Zhao, C.Y. & Fan, Xianfeng, 2024. "Thermochemical heat storage and material behavior of calcium hydroxide fine powder in a fluidized bed reactor," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224034698
    DOI: 10.1016/j.energy.2024.133691
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224034698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133691?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Selvan Bellan & Tatsuya Kodama & Nobuyuki Gokon & Koji Matsubara, 2022. "A review on high‐temperature thermochemical heat storage: Particle reactors and materials based on solid–gas reactions," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(5), September.
    2. Risthaus, Kai & Linder, Marc & Schmidt, Matthias, 2022. "Experimental investigation of a novel mechanically fluidized bed reactor for thermochemical energy storage with calcium hydroxide/calcium oxide," Applied Energy, Elsevier, vol. 315(C).
    3. Yan, J. & Zhao, C.Y. & Pan, Z.H., 2017. "The effect of CO2 on Ca(OH)2 and Mg(OH)2 thermochemical heat storage systems," Energy, Elsevier, vol. 124(C), pages 114-123.
    4. Wang, Mengyi & Chen, Li & He, Pu & Tao, Wen-Quan, 2019. "Numerical study and enhancement of Ca(OH)2/CaO dehydration process with porous channels embedded in reactors," Energy, Elsevier, vol. 181(C), pages 417-428.
    5. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    6. Ye, H. & Tao, Y.B. & Wu, Z.H., 2022. "Performance improvement of packed bed thermochemical heat storage by enhancing heat transfer and vapor transmission," Applied Energy, Elsevier, vol. 326(C).
    7. Han, X.C. & Xu, H.J. & Hua, W.S., 2023. "Decomposition performance and kinetics analysis of magnesium hydroxide regulated with C/N/Ti/Si additives for thermochemical heat storage," Applied Energy, Elsevier, vol. 344(C).
    8. Zhao, Y. & Zhao, C.Y. & Markides, C.N. & Wang, H. & Li, W., 2020. "Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Yang, Jianyu & Lougou, Bachirou Guene & Huang, Yudong & Shuai, Yong, 2024. "Effect of fluid direction and reactor structure on heat storage performance of Ca(OH)2/CaO based on shell-tube thermochemical energy storage device," Renewable Energy, Elsevier, vol. 234(C).
    2. Wang, Mengyi & Chen, Li & Zhou, Yuhao & Tao, Wen-Quan, 2022. "Numerical simulation of the calcium hydroxide/calcium oxide system dehydration reaction in a shell-tube reactor," Applied Energy, Elsevier, vol. 312(C).
    3. Wang, Wei & Shuai, Yong & Yang, Jiangyu & Lougou, Bachirou Guene & Huang, Yudong, 2023. "Heat transfer and heat storage characteristics of calcium hydroxide/oxide based on shell-tube thermochemical energy storage device," Renewable Energy, Elsevier, vol. 218(C).
    4. Wang, Yuhao & Wang, Ruilin & Guo, Yafei & Yang, Qingshan & Ying, Jiaheng & Liu, Yuanyuan & Sun, Jian & Li, Wenjia & Zhao, Chuanwen, 2024. "The optimization of the MgO/MgCO3 decarbonation process and machine learning-based improved reactor design approach," Energy, Elsevier, vol. 305(C).
    5. Chen, Jianing & Yang, Xueming & Su, Hui & Cui, Jie & Xie, Jianfei, 2024. "Evaluating and enhancing heat storage in a Ca(OH)2/CaO shell-tube reactor: A numerical study on key factors and performance optimization," Energy, Elsevier, vol. 309(C).
    6. Ye, H. & Tao, Y.B. & Wu, Z.H., 2022. "Performance improvement of packed bed thermochemical heat storage by enhancing heat transfer and vapor transmission," Applied Energy, Elsevier, vol. 326(C).
    7. Jun Yan & Lei Jiang & Changying Zhao, 2023. "Numerical Simulation of the Ca(OH) 2 /CaO Thermochemical Heat Storage Process in an Internal Heating Fixed-Bed Reactor," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
    8. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    9. Ding, Zhixiong & Wu, Wei, 2024. "Simulation of a multi-level absorption thermal battery with variable solution flow rate for adjustable cooling capacity," Energy, Elsevier, vol. 301(C).
    10. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    11. Luo, Ji-Wang & Chen, Li & Wang, MengYi & Xia, Yang & Tao, WenQuan, 2022. "Particle-scale study of coupled physicochemical processes in Ca(OH)2 dehydration using the lattice Boltzmann method," Energy, Elsevier, vol. 250(C).
    12. Che Lah, Nurul Akmal, 2021. "Late transition metal nanocomplexes: Applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    14. Han, X.C. & Xu, H.J. & Hua, W.S., 2023. "Decomposition performance and kinetics analysis of magnesium hydroxide regulated with C/N/Ti/Si additives for thermochemical heat storage," Applied Energy, Elsevier, vol. 344(C).
    15. Feng, Yupeng & Hu, Xiannan & Li, Xuhan & Zhang, Man & Zhu, Shahong & Yang, Hairui, 2023. "Self-compensation and attenuation mechanisms of carbide slag in multicycle thermochemical heat storage," Renewable Energy, Elsevier, vol. 218(C).
    16. Wang, Haomin & Liu, Xin & Liu, Xiao & Sun, Chenggong & Wu, Yupeng, 2023. "Fluidisable mesoporous silica composites for thermochemical energy storage," Energy, Elsevier, vol. 275(C).
    17. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    18. Shi, Tao & Xu, Huijin, 2022. "Integration of hydrogen storage and heat storage in thermochemical reactors enhanced with optimized topological structures: Charging process," Applied Energy, Elsevier, vol. 327(C).
    19. Xue, X.J. & Zhao, C.Y., 2023. "Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores," Applied Energy, Elsevier, vol. 329(C).
    20. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224034698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.