IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v234y2024ics0960148124012515.html
   My bibliography  Save this article

Application of KF/waste glass catalyst in the synthesis of fatty acid esters under pressurized conditions without glycerol generation

Author

Listed:
  • Postaue, Najla
  • Schneider, Ricardo
  • Borba, Carlos Eduardo
  • da Silva, Camila
  • Cardozo-Filho, Lúcio

Abstract

In this study, the efficiency of applying the KF/waste glass catalyst was tested in the transesterification of crambe oil under pressurized conditions for the synthesis of esters and glycerol carbonate (GLC). For this, a miscella pressurized extraction was used. The influence of temperature on different residence times was evaluated, and to verify the effect of the catalyst on the process, non-catalytic reactions were conducted. In reactions without the use of catalyst, a temperature of 250 °C was required to obtain >90 % esters yield. In the catalytic reactions, the operating conditions were reduced to 225 °C, to obtain ∼96 % esters yield, also providing the synthesis of a greater quantity of GLC, and a glycerol-free sample. The wet modification of powdered glass waste with KF results in the K2SiF6, NaF, CaF2, and KCaF3 phases. The laser-induced breakdown spectroscopy analyses showed the presence of fluorinated compounds in the catalyst. Furthermore, calcium and sodium ions from the glass waste matrix support were the source for the crystalization of K2SiF6/CaF2/KCaF3 and NaF phases, respectively. The catalyst showed a good catalytic activity, promoting high ester and GLC formation at 225 °C, 10 min and 10 MPa, remaining with good performance even after 8h of reaction, but it is important to mention that the stability of the catalyst needs to be improved due to the leaching of K to Ca.

Suggested Citation

  • Postaue, Najla & Schneider, Ricardo & Borba, Carlos Eduardo & da Silva, Camila & Cardozo-Filho, Lúcio, 2024. "Application of KF/waste glass catalyst in the synthesis of fatty acid esters under pressurized conditions without glycerol generation," Renewable Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:renene:v:234:y:2024:i:c:s0960148124012515
    DOI: 10.1016/j.renene.2024.121183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124012515
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Porcel, Meline Gurtat & de Mello, Bruna Tais Ferreira & Alves, Helton José & Schneider, Ricardo & da Silva, Camila & Borba, Carlos Eduardo, 2023. "Synthesis and characterization of KF/waste glass catalyst for use in the transesterification process under pressurized conditions," Renewable Energy, Elsevier, vol. 203(C), pages 56-67.
    2. Thushari, Indika & Babel, Sandhya & Samart, Chanatip, 2019. "Biodiesel production in an autoclave reactor using waste palm oil and coconut coir husk derived catalyst," Renewable Energy, Elsevier, vol. 134(C), pages 125-134.
    3. Teo, Siow Hwa & Islam, Aminul & Mansir, Nasar & Shamsuddin, Mohd Razali & Joseph, Collin G. & Goto, Motonobu & Taufiq-Yap, Yun Hin, 2022. "Sustainable biofuel production approach: Critical methanol green transesterification by efficient and stable heterogeneous catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Simões, S.S. & Ribeiro, J.S. & Celante, D. & Brondani, L.N. & Castilhos, F., 2020. "Heterogeneous catalyst screening for fatty acid methyl esters production through interesterification reaction," Renewable Energy, Elsevier, vol. 146(C), pages 719-726.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Yano Surya Pradana & I Gusti B. N. Makertihartha & Antonius Indarto & Tirto Prakoso & Tatang Hernas Soerawidjaja, 2024. "A Review of Biodiesel Cold Flow Properties and Its Improvement Methods: Towards Sustainable Biodiesel Application," Energies, MDPI, vol. 17(18), pages 1-43, September.
    3. Ella Cebisa Linganiso & Boitumelo Tlhaole & Lindokuhle Precious Magagula & Silas Dziike & Linda Zikhona Linganiso & Tshwafo Elias Motaung & Nosipho Moloto & Zikhona Nobuntu Tetana, 2022. "Biodiesel Production from Waste Oils: A South African Outlook," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    4. Gourich, Wail & Chan, Eng-Seng & Ng, Wei Zhe & Obon, Aaron Anthony & Maran, Kireshwen & Ong, Yi Hui & Lee, Chin Loong & Tan, Jully & Song, Cher Pin, 2022. "Life cycle benefits of enzymatic biodiesel co-produced in palm oil mills from sludge palm oil as renewable fuel for rural electrification," Applied Energy, Elsevier, vol. 325(C).
    5. Li, Xingyong & Fan, Qiyuan & Wu, Kaiyue & Liu, Na & Zhang, Wei & Liu, Ying & Chen, Yubao & Cheng, Jun & Zheng, Zhifeng, 2024. "Enhancing catalytic isomerization ability of SAPO-11 by typical acid modification in preparation of green diesel by one-step hydrotreatment of FAME," Renewable Energy, Elsevier, vol. 224(C).
    6. Zhang, Yujiao & Niu, Shengli & Hao, Yanan & Liu, Sitong & Liu, Jisen & Han, Kuihua & Wang, Yongzheng & Lu, Chunmei, 2023. "Preparation of SrZrAl multiple oxide catalyst for produce biodiesel from acidified palm oil," Renewable Energy, Elsevier, vol. 207(C), pages 116-127.
    7. Kumar, Ajeet & Vachan Tirkey, Jeevan & Kumar Shukla, Shailendra, 2021. "“Comparative energy and economic analysis of different vegetable oil plants for biodiesel production in India”," Renewable Energy, Elsevier, vol. 169(C), pages 266-282.
    8. He, Xin & Wang, Ning & Zhou, Qiaoqiao & Huang, Jun & Ramakrishna, Seeram & Li, Fanghua, 2024. "Smart aviation biofuel energy system coupling with machine learning technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    9. Sandouqa, Arwa & Al-Hamamre, Zayed, 2021. "Economical evaluation of jojoba cultivation for biodiesel production in Jordan," Renewable Energy, Elsevier, vol. 177(C), pages 1116-1132.
    10. Yadav, Nidhi & Yadav, Gaurav & Ahmaruzzaman, Md., 2023. "Fabrication of surface-modified dual waste-derived biochar for biodiesel production by microwave-assisted esterification of oleic acid: Optimization, kinetics, and mechanistic studies," Renewable Energy, Elsevier, vol. 218(C).
    11. Reza Nageubri Balfas & Azhari Muhammad Syam & Muhammad Muhammad & Adi Setiawan & Herman Fithra, 2024. "Characteristics of Biodiesel Produced from Crude Palm Oil through Non-Alcohol Synthesis Route Using Dimethyl Carbonate and Immobilized Eco-Enzyme Catalyst," Energies, MDPI, vol. 17(7), pages 1-16, March.
    12. Brondani, L.N. & Ribeiro, J.S. & Castilhos, F., 2020. "A new kinetic model for simultaneous interesterification and esterification reactions from methyl acetate and highly acidic oil," Renewable Energy, Elsevier, vol. 156(C), pages 579-590.
    13. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Carlos Luna & Juan Calero & Antonio A. Romero & Felipa M. Bautista & Diego Luna, 2022. "Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review," Energies, MDPI, vol. 15(9), pages 1-39, April.
    14. Wong, Wan-Ying & Lim, Steven & Pang, Yean-Ling & Shuit, Siew-Hoong & Lam, Man-Kee & Tan, Inn-Shi & Chen, Wei-Hsin, 2023. "A comprehensive review of the production methods and effect of parameters for glycerol-free biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:234:y:2024:i:c:s0960148124012515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.