IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v230y2024ics0960148124009418.html
   My bibliography  Save this article

Renewable energy stock prices forecast using environmental television newscasts investors’ sentiment

Author

Listed:
  • Loutfi, Ahmad Amine

Abstract

The world is turning towards renewable energies to sustainably meet its increasing demand for energy. Naturally, this is being accompanied by a strong momentum in trading within the renewable energy market. Today, behavioral finance acknowledges the major role of wider psychological and social factors in shaping the stock market, through influencing investors' sentiment. Therefore, this paper explores the understudied question of whether environmental television newscasts can be used as a proxy for measuring investors' sentiment and in helping to improve the forecast accuracy of renewable energy stock prices. First, we compute the sentiment scores of the environmental newscasts of CNN, BBC News, MSNBC, and Fox News. We then use machine learning to implement a baseline forecast model, as well as an augmented one which takes the newscasts’ sentiment scores as input. Using four different accuracy metrics, we find that environmental TV newscasts can improve the forecast accuracy of renewable energy stock prices in 78 % of the experiments, and decrease the Mean Absolute Error, Mean Squared Error, and Root Mean Squared Error in 83.3 % of the experiments. We also find that the sentiments of conservative news outlets, such as Fox News, can improve the forecast accuracy of renewable energy stock prices more than liberal ones. Finally, we provide some insights into potential psychological dynamics that can help us make sense of the results, such as the negativity bias theory.

Suggested Citation

  • Loutfi, Ahmad Amine, 2024. "Renewable energy stock prices forecast using environmental television newscasts investors’ sentiment," Renewable Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124009418
    DOI: 10.1016/j.renene.2024.120873
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124009418
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loutfi, Ahmad Amine & Sun, Mengtao & Loutfi, Ijlal & Solibakke, Per Bjarte, 2022. "Empirical study of day-ahead electricity spot-price forecasting: Insights into a novel loss function for training neural networks," Applied Energy, Elsevier, vol. 319(C).
    2. Siganos, Antonios & Vagenas-Nanos, Evangelos & Verwijmeren, Patrick, 2017. "Divergence of sentiment and stock market trading," Journal of Banking & Finance, Elsevier, vol. 78(C), pages 130-141.
    3. Sadorsky, Perry, 2012. "Modeling renewable energy company risk," Energy Policy, Elsevier, vol. 40(C), pages 39-48.
    4. Maha Elhini & Rasha Hammam, 2021. "The impact of COVID-19 on the standard & poor 500 index sectors: a multivariate generalized autoregressive conditional heteroscedasticity model," Journal of Chinese Economic and Foreign Trade Studies, Emerald Group Publishing Limited, vol. 14(1), pages 18-43, February.
    5. Piñeiro-Chousa, Juan & López-Cabarcos, M.Ángeles & Caby, Jérôme & Šević, Aleksandar, 2021. "The influence of investor sentiment on the green bond market," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    6. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    7. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    8. Zhang, Wei & Li, Xiao & Shen, Dehua & Teglio, Andrea, 2016. "Daily happiness and stock returns: Some international evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 201-209.
    9. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    10. Giang Thi Huong Vuong & Manh Huu Nguyen & Wing Keung Wong, 2022. "CBOE volatility index (VIX) and corporate market leverage," Cogent Economics & Finance, Taylor & Francis Journals, vol. 10(1), pages 2111798-211, December.
    11. Pedro Piccoli & Mo Chaudhury, 2018. "Overreaction to extreme market events and investor sentiment," Applied Economics Letters, Taylor & Francis Journals, vol. 25(2), pages 115-118, January.
    12. Bouri, Elie & Iqbal, Najaf & Klein, Tony, 2022. "Climate policy uncertainty and the price dynamics of green and brown energy stocks," Finance Research Letters, Elsevier, vol. 47(PB).
    13. Thomas Renault, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205113, HAL.
    14. Robert J. Shiller, 2003. "From Efficient Markets Theory to Behavioral Finance," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 83-104, Winter.
    15. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Pérez-Pico, Ada María & Ribeiro-Navarrete, Belén, 2018. "Does social network sentiment influence the relationship between the S&P 500 and gold returns?," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 57-64.
    16. Guo, Kun & Sun, Yi & Qian, Xin, 2017. "Can investor sentiment be used to predict the stock price? Dynamic analysis based on China stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 390-396.
    17. Henriques, Irene & Sadorsky, Perry, 2008. "Oil prices and the stock prices of alternative energy companies," Energy Economics, Elsevier, vol. 30(3), pages 998-1010, May.
    18. Dutta, Anupam & Dutta, Probal, 2022. "Geopolitical risk and renewable energy asset prices: Implications for sustainable development," Renewable Energy, Elsevier, vol. 196(C), pages 518-525.
    19. Timm O. Sprenger & Andranik Tumasjan & Philipp G. Sandner & Isabell M. Welpe, 2014. "Tweets and Trades: the Information Content of Stock Microblogs," European Financial Management, European Financial Management Association, vol. 20(5), pages 926-957, November.
    20. Juan Piñeiro-Chousa & M.Ángeles López-Cabarcos & Jérôme Caby & Aleksandar Šević, 2021. "The influence of investor sentiment on the green bond market," Post-Print hal-02960892, HAL.
    21. Shuming Liu, 2015. "Investor Sentiment and Stock Market Liquidity," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 16(1), pages 51-67, January.
    22. Wang, Jiqian & Ma, Feng & Bouri, Elie & Zhong, Juandan, 2022. "Volatility of clean energy and natural gas, uncertainty indices, and global economic conditions," Energy Economics, Elsevier, vol. 108(C).
    23. Boubaker, Sabri & Liu, Zhenya & Zhai, Ling, 2021. "Big data, news diversity and financial market crash," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    24. Bohl, Martin T. & Kaufmann, Philipp & Stephan, Patrick M., 2013. "From hero to zero: Evidence of performance reversal and speculative bubbles in German renewable energy stocks," Energy Economics, Elsevier, vol. 37(C), pages 40-51.
    25. Arindam Bandopadhyaya & Anne Leah Jones, 2006. "Measuring investor sentiment in equity markets," Journal of Asset Management, Palgrave Macmillan, vol. 7(3), pages 208-215, September.
    26. Loutfi, Ahmad Amine, 2022. "A framework for evaluating the business deployability of digital footprint based models for consumer credit," Journal of Business Research, Elsevier, vol. 152(C), pages 473-486.
    27. Shahzad, Syed Jawad Hussain & Bouri, Elie & Kayani, Ghulam Mujtaba & Nasir, Rana Muhammad & Kristoufek, Ladislav, 2020. "Are clean energy stocks efficient? Asymmetric multifractal scaling behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    28. Dawar, Ishaan & Dutta, Anupam & Bouri, Elie & Saeed, Tareq, 2021. "Crude oil prices and clean energy stock indices: Lagged and asymmetric effects with quantile regression," Renewable Energy, Elsevier, vol. 163(C), pages 288-299.
    29. Subhankar Nayak, 2010. "Investor Sentiment and Corporate Bond Yield Spreads," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 2(2), pages 59-80, September.
    30. Boubaker, S. & Liu, Z. & Zhai, L., 2021. "Big data, news diversity and financial market crash," Post-Print hal-03323671, HAL.
    31. Song, Yingjie & Ji, Qiang & Du, Ya-Juan & Geng, Jiang-Bo, 2019. "The dynamic dependence of fossil energy, investor sentiment and renewable energy stock markets," Energy Economics, Elsevier, vol. 84(C).
    32. Chang, Chia-Lin & McAleer, Michael & Wang, Yu-Ann, 2020. "Herding behaviour in energy stock markets during the Global Financial Crisis, SARS, and ongoing COVID-19," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    33. Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of Twitter sentiment on renewable energy stocks," Energy Economics, Elsevier, vol. 76(C), pages 153-169.
    34. Yang, Chunpeng & Zhou, Liyun, 2015. "Sentiment approach to underestimation and overestimation pricing model," Economic Modelling, Elsevier, vol. 51(C), pages 280-288.
    35. Herrera, Gabriel Paes & Constantino, Michel & Su, Jen-Je & Naranpanawa, Athula, 2022. "Renewable energy stocks forecast using Twitter investor sentiment and deep learning," Energy Economics, Elsevier, vol. 114(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Yiran & Liu, Chang & Sun, Xiaolei & Guo, Kun, 2023. "Investor sentiment and the Chinese new energy stock market: A risk–return perspective," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 395-408.
    2. Szymon Lis, 2022. "Investor Sentiment in Asset Pricing Models: A Review," Working Papers 2022-14, Faculty of Economic Sciences, University of Warsaw.
    3. Herrera, Gabriel Paes & Constantino, Michel & Su, Jen-Je & Naranpanawa, Athula, 2022. "Renewable energy stocks forecast using Twitter investor sentiment and deep learning," Energy Economics, Elsevier, vol. 114(C).
    4. Szymon Lis, 2024. "Investor Sentiment in Asset Pricing Models: A Review of Empirical Evidence," Papers 2411.13180, arXiv.org.
    5. Ahmed, Walid M.A. & Sleem, Mohamed A.E., 2023. "Short- and long-run determinants of the price behavior of US clean energy stocks: A dynamic ARDL simulations approach," Energy Economics, Elsevier, vol. 124(C).
    6. Mariano González-Sánchez & M. Encina Morales de Vega, 2021. "Influence of Bloomberg’s Investor Sentiment Index: Evidence from European Union Financial Sector," Mathematics, MDPI, vol. 9(4), pages 1-21, February.
    7. Yousaf, Imran & Youssef, Manel & Goodell, John W., 2022. "Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index," International Review of Financial Analysis, Elsevier, vol. 83(C).
    8. Roy, Preeti & Ahmad, Wasim & Sadorsky, Perry & Phani, B.V., 2022. "What do we know about the idiosyncratic risk of clean energy equities?," Energy Economics, Elsevier, vol. 112(C).
    9. Wang, Gaoshan & Yu, Guangjin & Shen, Xiaohong, 2021. "The effect of online environmental news on green industry stocks: The mediating role of investor sentiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    10. Jia, Boxiang & Shen, Dehua & Zhang, Wei, 2022. "Extreme sentiment and herding: Evidence from the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 63(C).
    11. Na, Haejung & Kim, Soonho, 2021. "Predicting stock prices based on informed traders’ activities using deep neural networks," Economics Letters, Elsevier, vol. 204(C).
    12. Bouteska, Ahmed & Cardillo, Giovanni & Harasheh, Murad, 2023. "Is it all about noise? Investor sentiment and risk nexus: evidence from China," Finance Research Letters, Elsevier, vol. 57(C).
    13. Hadad, Elroi & Kedar-Levy, Haim, 2024. "The impact of retail investor sentiment on the conditional volatility of stocks and bonds: Evidence from the Tel-Aviv stock exchange," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 1303-1313.
    14. Mohammad Alomari & Abdel Razzaq Al rababa’a & Ghaith El-Nader & Ahmad Alkhataybeh, 2021. "Who’s behind the wheel? The role of social and media news in driving the stock–bond correlation," Review of Quantitative Finance and Accounting, Springer, vol. 57(3), pages 959-1007, October.
    15. Daniele Ballinari & Simon Behrendt, 2021. "How to gauge investor behavior? A comparison of online investor sentiment measures," Digital Finance, Springer, vol. 3(2), pages 169-204, June.
    16. Chen, Rongda & Wang, Shengnan & Jin, Chenglu & Yu, Jingjing & Zhang, Xinyu & Zhang, Shuonan, 2023. "Comovements between multidimensional investor sentiment and returns on internet financial products," International Review of Financial Analysis, Elsevier, vol. 85(C).
    17. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Šević, Aleksandar, 2022. "Green bond market and Sentiment: Is there a switching Behaviour?," Journal of Business Research, Elsevier, vol. 141(C), pages 520-527.
    18. Abakah, Emmanuel Joel Aikins & Abdullah, Mohammad & Yousaf, Imran & Kumar Tiwari, Aviral & Li, Yanshuang, 2024. "Economic sanctions sentiment and global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    19. Bouoiyour, Jamal & Gauthier, Marie & Bouri, Elie, 2023. "Which is leading: Renewable or brown energy assets?," Energy Economics, Elsevier, vol. 117(C).
    20. Zhang, Li & Wang, Lu & Peng, Lijuan & Luo, Keyu, 2023. "Measuring the response of clean energy stock price volatility to extreme shocks," Renewable Energy, Elsevier, vol. 206(C), pages 1289-1300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124009418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.