IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v319y2022ics0306261922005542.html
   My bibliography  Save this article

Empirical study of day-ahead electricity spot-price forecasting: Insights into a novel loss function for training neural networks

Author

Listed:
  • Loutfi, Ahmad Amine
  • Sun, Mengtao
  • Loutfi, Ijlal
  • Solibakke, Per Bjarte

Abstract

Within deregulated economies, large electricity volumes are traded in daily spot markets, which are highly volatile. To develop profitable trading strategies, all stakeholders must be empowered with robust forecasting tools. Although neural network approaches have become increasingly popular for time-series forecasting, they do not optimally capture unique features of financial datasets. A major factor hindering their performance is the choice of the backpropagation loss function. We performed a systematic and empirical study of loss functions that can optimize the forecasting of day-ahead electricity spot prices. We first outlined a set of properties that such a loss function should meet. We proposed Theil UII-S as a novel loss function, which is derived from Theil’s forecast accuracy coefficient. We also implemented five neural network models and trained them on the two most used loss functions—mean squared error and mean absolute error—and our Theil UII-S. We finally tested our models on a real dataset of the electricity spot market of Norway. Our results show that Theil UII-S provides more accurate forecasts on the average, best, and, worst case scenarios, converges faster, is twice differentiable, and has a variable gradient.

Suggested Citation

  • Loutfi, Ahmad Amine & Sun, Mengtao & Loutfi, Ijlal & Solibakke, Per Bjarte, 2022. "Empirical study of day-ahead electricity spot-price forecasting: Insights into a novel loss function for training neural networks," Applied Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:appene:v:319:y:2022:i:c:s0306261922005542
    DOI: 10.1016/j.apenergy.2022.119182
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922005542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timothy Christensen & Stan Hurn & Kenneth Lindsay, 2009. "It Never Rains but it Pours: Modeling the Persistence of Spikes in Electricity Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-48.
    2. von der Fehr, N.-H. & Harbord,D., 1998. "Competition in Electricity Spot Markets. Economic Theory and International Experience," Memorandum 05/1998, Oslo University, Department of Economics.
    3. Terui, Nobuhiko & van Dijk, Herman K., 2002. "Combined forecasts from linear and nonlinear time series models," International Journal of Forecasting, Elsevier, vol. 18(3), pages 421-438.
    4. Crespo Cuaresma, Jesús & Hlouskova, Jaroslava & Kossmeier, Stephan & Obersteiner, Michael, 2004. "Forecasting electricity spot-prices using linear univariate time-series models," Applied Energy, Elsevier, vol. 77(1), pages 87-106, January.
    5. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    6. Rafal Weron & Adam Misiorek, 2005. "Forecasting Spot Electricity Prices With Time Series Models," Econometrics 0504001, University Library of Munich, Germany.
    7. Bolle, Friedel, 2001. "Competition with supply and demand functions," Energy Economics, Elsevier, vol. 23(3), pages 253-277, May.
    8. Angelus, Alexandar, 2001. "Electricity Price Forecasting in Deregulated Markets," The Electricity Journal, Elsevier, vol. 14(3), pages 32-41, April.
    9. Torstein Bye & Einar Hope, 2005. "Deregulation of electricity markets : The Norwegian experience," Discussion Papers 433, Statistics Norway, Research Department.
    10. Qi Wang & Yue Ma & Kun Zhao & Yingjie Tian, 2022. "A Comprehensive Survey of Loss Functions in Machine Learning," Annals of Data Science, Springer, vol. 9(2), pages 187-212, April.
    11. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    12. Qi, Min & Zhang, Guoqiang Peter, 2001. "An investigation of model selection criteria for neural network time series forecasting," European Journal of Operational Research, Elsevier, vol. 132(3), pages 666-680, August.
    13. Eric Guerci & Mohammad Ali Rastegar & Silvano Cincotti, 2010. "Agent-based modeling and simulation of competitive wholesale electricity markets," Post-Print halshs-00871063, HAL.
    14. Paraschiv, Florentina & Erni, David & Pietsch, Ralf, 2014. "The impact of renewable energies on EEX day-ahead electricity prices," Energy Policy, Elsevier, vol. 73(C), pages 196-210.
    15. Albanese, Claudio & Lo, Harry & Tompaidis, Stathis, 2012. "A numerical algorithm for pricing electricity derivatives for jump-diffusion processes based on continuous time lattices," European Journal of Operational Research, Elsevier, vol. 222(2), pages 361-368.
    16. Lewis, Richard & Reinsel, Gregory C., 1985. "Prediction of multivariate time series by autoregressive model fitting," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 393-411, June.
    17. Arango, Santiago & Dyner, Isaac & Larsen, Erik R., 2006. "Lessons from deregulation: Understanding electricity markets in South America," Utilities Policy, Elsevier, vol. 14(3), pages 196-207, September.
    18. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    19. Bi, Jian-Wu & Li, Hui & Fan, Zhi-Ping, 2021. "Tourism demand forecasting with time series imaging: A deep learning model," Annals of Tourism Research, Elsevier, vol. 90(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).
    2. Stefano Frizzo Stefenon & Laio Oriel Seman & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2023. "Aggregating Prophet and Seasonal Trend Decomposition for Time Series Forecasting of Italian Electricity Spot Prices," Energies, MDPI, vol. 16(3), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    2. G P Girish & Aviral Kumar Tiwari, 2016. "A comparison of different univariate forecasting models forSpot Electricity Price in India," Economics Bulletin, AccessEcon, vol. 36(2), pages 1039-1057.
    3. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601, December.
    4. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    5. S. Vijayalakshmi & G. P. Girish, 2015. "Artificial Neural Networks for Spot Electricity Price Forecasting: A Review," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1092-1097.
    6. Ioannidis, Filippos & Kosmidou, Kyriaki & Savva, Christos & Theodossiou, Panayiotis, 2021. "Electricity pricing using a periodic GARCH model with conditional skewness and kurtosis components," Energy Economics, Elsevier, vol. 95(C).
    7. Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
    8. Raviv, Eran & Bouwman, Kees E. & van Dijk, Dick, 2015. "Forecasting day-ahead electricity prices: Utilizing hourly prices," Energy Economics, Elsevier, vol. 50(C), pages 227-239.
    9. Lu, Ye & Suthaharan, Neyavan, 2023. "Electricity price spike clustering: A zero-inflated GARX approach," Energy Economics, Elsevier, vol. 124(C).
    10. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    11. Ergemen, Yunus Emre & Haldrup, Niels & Rodríguez-Caballero, Carlos Vladimir, 2016. "Common long-range dependence in a panel of hourly Nord Pool electricity prices and loads," Energy Economics, Elsevier, vol. 60(C), pages 79-96.
    12. Ehsani, Behdad & Pineau, Pierre-Olivier & Charlin, Laurent, 2024. "Price forecasting in the Ontario electricity market via TriConvGRU hybrid model: Univariate vs. multivariate frameworks," Applied Energy, Elsevier, vol. 359(C).
    13. Angelica Gianfreda & Derek Bunn, 2018. "A Stochastic Latent Moment Model for Electricity Price Formation," BEMPS - Bozen Economics & Management Paper Series BEMPS46, Faculty of Economics and Management at the Free University of Bozen.
    14. Mukherjee, Paramita & Coondoo, Dipankor & Lahiri, Poulomi, 2019. "Forecasting Hourly Prices in Indian Spot Electricity Market," MPRA Paper 103161, University Library of Munich, Germany.
    15. Lars Ivar Hagfors & Hilde Hørthe Kamperud & Florentina Paraschiv & Marcel Prokopczuk & Alma Sator & Sjur Westgaard, 2016. "Prediction of extreme price occurrences in the German day-ahead electricity market," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1929-1948, December.
    16. repec:bny:wpaper:0060 is not listed on IDEAS
    17. Halužan, Marko & Verbič, Miroslav & Zorić, Jelena, 2020. "Performance of alternative electricity price forecasting methods: Findings from the Greek and Hungarian power exchanges," Applied Energy, Elsevier, vol. 277(C).
    18. Lo Prete, Chiara & Norman, Catherine S., 2013. "Rockets and feathers in power futures markets? Evidence from the second phase of the EU ETS," Energy Economics, Elsevier, vol. 36(C), pages 312-321.
    19. Antonio Bello & Javier Reneses & Antonio Muñoz, 2016. "Medium-Term Probabilistic Forecasting of Extremely Low Prices in Electricity Markets: Application to the Spanish Case," Energies, MDPI, vol. 9(3), pages 1-27, March.
    20. Adam Clements & Joanne Fuller & Stan Hurn, 2013. "Semi-parametric Forecasting of Spikes in Electricity Prices," The Economic Record, The Economic Society of Australia, vol. 89(287), pages 508-521, December.
    21. Keles, Dogan & Scelle, Jonathan & Paraschiv, Florentina & Fichtner, Wolf, 2016. "Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks," Applied Energy, Elsevier, vol. 162(C), pages 218-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:319:y:2022:i:c:s0306261922005542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.