IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v469y2017icp390-396.html
   My bibliography  Save this article

Can investor sentiment be used to predict the stock price? Dynamic analysis based on China stock market

Author

Listed:
  • Guo, Kun
  • Sun, Yi
  • Qian, Xin

Abstract

With the development of the social network, the interaction between investors in stock market became more fast and convenient. Thus, investor sentiment which can influence their investment decisions may be quickly spread and magnified through the network, and to a certain extent the stock market can be affected. This paper collected the user comments data from a popular professional social networking site of China stock market called Xueqiu, then the investor sentiment data can be obtained through semantic analysis. The dynamic analysis on relationship between investor sentiment and stock market is proposed based on Thermal Optimal Path (TOP) method. The results show that the sentiment data was not always leading over stock market price, and it can be used to predict the stock price only when the stock has high investor attention.

Suggested Citation

  • Guo, Kun & Sun, Yi & Qian, Xin, 2017. "Can investor sentiment be used to predict the stock price? Dynamic analysis based on China stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 390-396.
  • Handle: RePEc:eee:phsmap:v:469:y:2017:i:c:p:390-396
    DOI: 10.1016/j.physa.2016.11.114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116309384
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.11.114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harrison Hong & Terence Lim & Jeremy C. Stein, 2000. "Bad News Travels Slowly: Size, Analyst Coverage, and the Profitability of Momentum Strategies," Journal of Finance, American Finance Association, vol. 55(1), pages 265-295, February.
    2. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    3. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    4. Zhou, Wei-Xing & Sornette, Didier, 2006. "Non-parametric determination of real-time lag structure between two time series: The "optimal thermal causal path" method with applications to economic data," Journal of Macroeconomics, Elsevier, vol. 28(1), pages 195-224, March.
    5. Barberis, Nicholas & Shleifer, Andrei & Vishny, Robert, 1998. "A model of investor sentiment," Journal of Financial Economics, Elsevier, vol. 49(3), pages 307-343, September.
    6. Didier Sornette & Wei-Xing Zhou, 2005. "Non-parametric determination of real-time lag structure between two time series: the 'optimal thermal causal path' method," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 577-591.
    7. Kun Guo & Wei-Xing Zhou & Si-Wei Cheng & Didier Sornette, 2011. "The US Stock Market Leads the Federal Funds Rate and Treasury Bond Yields," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-9, August.
    8. Stauffer, Dietrich & Sornette, Didier, 1999. "Self-organized percolation model for stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 271(3), pages 496-506.
    9. Schmeling, Maik, 2009. "Investor sentiment and stock returns: Some international evidence," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 394-408, June.
    10. Zhou, Wei-Xing & Sornette, Didier, 2007. "Lead-lag cross-sectional structure and detection of correlated–anticorrelated regime shifts: Application to the volatilities of inflation and economic growth rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 287-296.
    11. Brown, Gregory W. & Cliff, Michael T., 2004. "Investor sentiment and the near-term stock market," Journal of Empirical Finance, Elsevier, vol. 11(1), pages 1-27, January.
    12. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    13. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    14. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    15. repec:bla:jfinan:v:53:y:1998:i:6:p:1839-1885 is not listed on IDEAS
    16. Gong, Chen-Chen & Ji, Shen-Dan & Su, Li-Ling & Li, Sai-Ping & Ren, Fei, 2016. "The lead–lag relationship between stock index and stock index futures: A thermal optimal path method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 63-72.
    17. Joseph, Kissan & Babajide Wintoki, M. & Zhang, Zelin, 2011. "Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1116-1127, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Can-Zhong & Li, Hong-Yu, 2020. "Time-varying lead–lag structure between investor sentiment and stock market," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    2. Prajwal Eachempati & Praveen Ranjan Srivastava, 2021. "Accounting for unadjusted news sentiment for asset pricing," Qualitative Research in Financial Markets, Emerald Group Publishing Limited, vol. 13(3), pages 383-422, May.
    3. Mariem Talbi & Amel Ben Halima, 2019. "Global Contagion of Investor Sentiment during the US Subprime Crisis: The Case of the USA and the Region of Latin America," International Journal of Economics and Financial Issues, Econjournals, vol. 9(3), pages 163-174.
    4. Szymon Lis, 2022. "Investor Sentiment in Asset Pricing Models: A Review," Working Papers 2022-14, Faculty of Economic Sciences, University of Warsaw.
    5. Wenjie Ding & Khelifa Mazouz & Qingwei Wang, 2019. "Investor sentiment and the cross-section of stock returns: new theory and evidence," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 493-525, August.
    6. Li, Xiao & Shen, Dehua & Xue, Mei & Zhang, Wei, 2017. "Daily happiness and stock returns: The case of Chinese company listed in the United States," Economic Modelling, Elsevier, vol. 64(C), pages 496-501.
    7. Yousra Trichilli & Mouna Abdelhédi & Mouna Boujelbène Abbes, 2020. "The thermal optimal path model: Does Google search queries help to predict dynamic relationship between investor’s sentiment and indexes returns?," Journal of Asset Management, Palgrave Macmillan, vol. 21(3), pages 261-279, May.
    8. Enwei Zhu & Jing Wu & Hongyu Liu & Keyang Li, 2023. "A Sentiment Index of the Housing Market in China: Text Mining of Narratives on Social Media," The Journal of Real Estate Finance and Economics, Springer, vol. 66(1), pages 77-118, January.
    9. Zhang, Wei & Li, Xiao & Shen, Dehua & Teglio, Andrea, 2016. "Daily happiness and stock returns: Some international evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 201-209.
    10. Hou, Yang & Meng, Jiayin, 2018. "The momentum effect in the Chinese market and its relationship with the simultaneous and the lagged investor sentiment," MPRA Paper 94838, University Library of Munich, Germany.
    11. Siganos, Antonios & Vagenas-Nanos, Evangelos & Verwijmeren, Patrick, 2014. "Facebook's daily sentiment and international stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 730-743.
    12. Shah, Syed Faisal & Albaity, Mohamed, 2022. "The role of trust, investor sentiment, and uncertainty on bank stock return performance: Evidence from the MENA region," The Journal of Economic Asymmetries, Elsevier, vol. 26(C).
    13. Wu, Qinqin & Hao, Ying & Lu, Jing, 2017. "Investor sentiment, idiosyncratic risk, and mispricing of American Depository Receipt," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 1-14.
    14. Thomas Dimpfl & Vladislav Kleiman, 2019. "Investor Pessimism and the German Stock Market: Exploring Google Search Queries," German Economic Review, Verein für Socialpolitik, vol. 20(1), pages 1-28, February.
    15. Han, Xing & Li, Youwei, 2017. "Can investor sentiment be a momentum time-series predictor? Evidence from China," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 212-239.
    16. Wang, Wenzhao & Su, Chen & Duxbury, Darren, 2021. "Investor sentiment and stock returns: Global evidence," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 365-391.
    17. Ung, Sze Nie & Gebka, Bartosz & Anderson, Robert D.J., 2023. "Is sentiment the solution to the risk–return puzzle? A (cautionary) note," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    18. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    19. Saumya Ranjan Dash & Jitendra Mahakud, 2013. "Investor Sentiment and Stock Return: Do Industries Matter?," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 7(3), pages 315-349, August.
    20. Yawen Hudson & Christopher J. Green, 2013. "Born in the USA? Contagious investor sentiment and UK equity returns," Discussion Paper Series 2013_13, Department of Economics, Loughborough University, revised Nov 2013.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:469:y:2017:i:c:p:390-396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.