IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124005457.html
   My bibliography  Save this article

Maximizing hybrid microgrid system performance: A comparative analysis and optimization using a gradient pelican algorithm

Author

Listed:
  • El-Sattar, Hoda Abd
  • Hassan, Mohamed H.
  • Vera, David
  • Jurado, Francisco
  • Kamel, Salah

Abstract

The development of hybrid systems that combine different energy sources has become increasingly important to meet the growing demand for clean and sustainable energy. These systems can offer a reliable and efficient solution to reduce dependence on conventional energy sources and address the issues of climate change and environmental degradation. This study focuses on two types of hybrid systems, namely PV/biomass and PV/diesel, which are commonly used in off-grid areas or places with limited access to electricity. The proposed optimization framework aims to determine the optimal sizing of each component in the system, including PV panels, batteries, and backup sources, to maximize the performance and efficiency of the hybrid system. The Gradient Pelican Optimization Algorithm (GPOA), which is an advanced optimization technique, is proposed to solve the optimization problem. The algorithm is modified to include a local escaping operator, which allows the algorithm to escape local optima and achieve better solutions. The outcomes of the simulation show that the GPOA algorithm outperforms other well-known algorithms in terms of accuracy and computational efficiency. The simulation results also demonstrate that the PV/biomass hybrid system outperforms the PV/diesel hybrid system in terms of cost and environmental impact. The proposed framework and optimization methodology can be useful for designing and optimizing other hybrid systems and can be applied to various applications, including off-grid and remote areas, distributed power systems, and microgrids. The findings of this study can also contribute to the development and promotion of renewable energy and sustainable development.

Suggested Citation

  • El-Sattar, Hoda Abd & Hassan, Mohamed H. & Vera, David & Jurado, Francisco & Kamel, Salah, 2024. "Maximizing hybrid microgrid system performance: A comparative analysis and optimization using a gradient pelican algorithm," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005457
    DOI: 10.1016/j.renene.2024.120480
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124005457
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Hussain, Moaid K. & Adzman, Mohd Rafi & Ghazali, Nur Hafizah & Ramli, Makbul A.M. & Khalil Zidane, Tekai Eddine, 2022. "A new optimization strategy for wind/diesel/battery hybrid energy system," Energy, Elsevier, vol. 239(PE).
    2. SeyedGarmroudi, SeyedDavoud & Kayakutlu, Gulgun & Kayalica, M. Ozgur & Çolak, Üner, 2024. "Improved Pelican optimization algorithm for solving load dispatch problems," Energy, Elsevier, vol. 289(C).
    3. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Yusta-Loyo, José M. & Domínguez-Navarro, José A. & Ramírez-Rosado, Ignacio J. & Lujano, Juan & Aso, Ismael, 2011. "Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage," Applied Energy, Elsevier, vol. 88(11), pages 4033-4041.
    4. Zeljković, Čedomir & Mršić, Predrag & Erceg, Bojan & Lekić, Đorđe & Kitić, Nemanja & Matić, Petar, 2022. "Optimal sizing of photovoltaic-wind-diesel-battery power supply for mobile telephony base stations," Energy, Elsevier, vol. 242(C).
    5. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.
    6. Naderipour, Amirreza & Kamyab, Hesam & Klemeš, Jiří Jaromír & Ebrahimi, Reza & Chelliapan, Shreeshivadasan & Nowdeh, Saber Arabi & Abdullah, Aldrin & Hedayati Marzbali, Massoomeh, 2022. "Optimal design of hybrid grid-connected photovoltaic/wind/battery sustainable energy system improving reliability, cost and emission," Energy, Elsevier, vol. 257(C).
    7. El-Sattar, Hoda Abd & Kamel, Salah & Hassan, Mohamed H. & Jurado, Francisco, 2022. "An effective optimization strategy for design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 260(C).
    8. Bolukbasi, Gizem & Kocaman, Ayse Selin, 2018. "A prize collecting Steiner tree approach to least cost evaluation of grid and off-grid electrification systems," Energy, Elsevier, vol. 160(C), pages 536-543.
    9. Taghavifar, Hadi & Zomorodian, Zahra Sadat, 2021. "Techno-economic viability of on grid micro-hybrid PV/wind/Gen system for an educational building in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
    2. Zhao, Yi-Bo & Dong, Xiao-Jian & Shen, Jia-Ni & He, Yi-Jun, 2024. "Simultaneous sizing and scheduling optimization for PV-wind-battery hybrid systems with a modified battery lifetime model: A high-resolution analysis in China," Applied Energy, Elsevier, vol. 360(C).
    3. Irshad, Ahmad Shah & Samadi, Wais Khan & Fazli, Agha Mohammad & Noori, Abdul Ghani & Amin, Ahmad Shah & Zakir, Mohammad Naseer & Bakhtyal, Irfan Ahmad & Karimi, Bashir Ahmad & Ludin, Gul Ahmad & Senjy, 2023. "Resilience and reliable integration of PV-wind and hydropower based 100% hybrid renewable energy system without any energy storage system for inaccessible area electrification," Energy, Elsevier, vol. 282(C).
    4. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    5. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    6. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    7. Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
    8. El-Sattar, Hoda Abd & Kamel, Salah & Hassan, Mohamed H. & Jurado, Francisco, 2022. "An effective optimization strategy for design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 260(C).
    9. Sheng, Wanxing & Li, Rui & Yan, Tao & Tseng, Ming-Lang & Lou, Jiale & Li, Lingling, 2023. "A hybrid dynamic economics emissions dispatch model: Distributed renewable power systems based on improved COOT optimization algorithm," Renewable Energy, Elsevier, vol. 204(C), pages 493-506.
    10. Díaz, Guzmán & Planas, Estefanía & Andreu, Jon & Kortabarria, Iñigo, 2015. "Joint cost of energy under an optimal economic policy of hybrid power systems subject to uncertainty," Energy, Elsevier, vol. 88(C), pages 837-848.
    11. Sachs, Julia & Sawodny, Oliver, 2016. "Multi-objective three stage design optimization for island microgrids," Applied Energy, Elsevier, vol. 165(C), pages 789-800.
    12. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
    13. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    14. Trieste, S. & Hmam, S. & Olivier, J.-C. & Bourguet, S. & Loron, L., 2015. "Techno-economic optimization of a supercapacitor-based energy storage unit chain: Application on the first quick charge plug-in ferry," Applied Energy, Elsevier, vol. 153(C), pages 3-14.
    15. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2015. "A detailed model for the optimal management of a multigood microgrid," Applied Energy, Elsevier, vol. 154(C), pages 862-873.
    16. García-Villoria, Alberto & Domenech, Bruno & Ferrer-Martí, Laia & Juanpera, Marc & Pastor, Rafael, 2020. "Ad-hoc heuristic for design of wind-photovoltaic electrification systems, including management constraints," Energy, Elsevier, vol. 212(C).
    17. Ioannis E. Kosmadakis & Costas Elmasides, 2021. "A Sizing Method for PV–Battery–Generator Systems for Off-Grid Applications Based on the LCOE," Energies, MDPI, vol. 14(7), pages 1-29, April.
    18. Morteza Nazari-Heris & Atefeh Tamaskani Esfehankalateh & Pouya Ifaei, 2023. "Hybrid Energy Systems for Buildings: A Techno-Economic-Enviro Systematic Review," Energies, MDPI, vol. 16(12), pages 1-15, June.
    19. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    20. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.