Optimal design of hybrid grid-connected photovoltaic/wind/battery sustainable energy system improving reliability, cost and emission
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.124679
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa, 2010. "Optimization of capacity and operation for CCHP system by genetic algorithm," Applied Energy, Elsevier, vol. 87(4), pages 1325-1335, April.
- Ghorbani, Narges & Kasaeian, Alibakhsh & Toopshekan, Ashkan & Bahrami, Leyli & Maghami, Amin, 2018. "Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability," Energy, Elsevier, vol. 154(C), pages 581-591.
- Hadidian Moghaddam, Mohammad Jafar & Kalam, Akhtar & Nowdeh, Saber Arabi & Ahmadi, Abdollah & Babanezhad, Manoochehr & Saha, Sajeeb, 2019. "Optimal sizing and energy management of stand-alone hybrid photovoltaic/wind system based on hydrogen storage considering LOEE and LOLE reliability indices using flower pollination algorithm," Renewable Energy, Elsevier, vol. 135(C), pages 1412-1434.
- Heydari, Ali & Askarzadeh, Alireza, 2016. "Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept," Applied Energy, Elsevier, vol. 165(C), pages 601-611.
- Askarzadeh, Alireza, 2017. "Distribution generation by photovoltaic and diesel generator systems: Energy management and size optimization by a new approach for a stand-alone application," Energy, Elsevier, vol. 122(C), pages 542-551.
- Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).
- Azaza, Maher & Wallin, Fredrik, 2017. "Multi objective particle swarm optimization of hybrid micro-grid system: A case study in Sweden," Energy, Elsevier, vol. 123(C), pages 108-118.
- Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Mirjalili, Seyedali, 2020. "Multiple scenarios multi-objective salp swarm optimization for sizing of standalone photovoltaic system," Renewable Energy, Elsevier, vol. 153(C), pages 1330-1345.
- Ramli, Makbul A.M. & Bouchekara, H.R.E.H. & Alghamdi, Abdulsalam S., 2018. "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 400-411.
- Bakhshi, Reza & Sadeh, Javad & Mosaddegh, Hamid-Reza, 2014. "Optimal economic designing of grid-connected photovoltaic systems with multiple inverters using linear and nonlinear module models based on Genetic Algorithm," Renewable Energy, Elsevier, vol. 72(C), pages 386-394.
- Fodhil, F. & Hamidat, A. & Nadjemi, O., 2019. "Potential, optimization and sensitivity analysis of photovoltaic-diesel-battery hybrid energy system for rural electrification in Algeria," Energy, Elsevier, vol. 169(C), pages 613-624.
- Toopshekan, Ashkan & Yousefi, Hossein & Astaraei, Fatemeh Razi, 2020. "Technical, economic, and performance analysis of a hybrid energy system using a novel dispatch strategy," Energy, Elsevier, vol. 213(C).
- Zhang, Ge & Shi, Yong & Maleki, Akbar & A. Rosen, Marc, 2020. "Optimal location and size of a grid-independent solar/hydrogen system for rural areas using an efficient heuristic approach," Renewable Energy, Elsevier, vol. 156(C), pages 1203-1214.
- Baghaee, H.R. & Mirsalim, M. & Gharehpetian, G.B. & Talebi, H.A., 2016. "Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system," Energy, Elsevier, vol. 115(P1), pages 1022-1041.
- Mohamed, Mohamed A. & Eltamaly, Ali M. & Alolah, Abdulrahman I., 2017. "Swarm intelligence-based optimization of grid-dependent hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 515-524.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- El-Sattar, Hoda Abd & Hassan, Mohamed H. & Vera, David & Jurado, Francisco & Kamel, Salah, 2024. "Maximizing hybrid microgrid system performance: A comparative analysis and optimization using a gradient pelican algorithm," Renewable Energy, Elsevier, vol. 227(C).
- Mohana Alanazi & Abdulaziz Alanazi & Ahmad Almadhor & Hafiz Tayyab Rauf, 2023. "An Improved Fick’s Law Algorithm Based on Dynamic Lens-Imaging Learning Strategy for Planning a Hybrid Wind/Battery Energy System in Distribution Network," Mathematics, MDPI, vol. 11(5), pages 1-30, March.
- Jing Yang & Jiale Xiong & Yen-Lin Chen & Por Lip Yee & Chin Soon Ku & Manoochehr Babanezhad, 2023. "Improved Golden Jackal Optimization for Optimal Allocation and Scheduling of Wind Turbine and Electric Vehicles Parking Lots in Electrical Distribution Network Using Rosenbrock’s Direct Rotation Strat," Mathematics, MDPI, vol. 11(6), pages 1-23, March.
- Xi, Yufei & Zhang, Zhengfa & Zhang, Jiansheng, 2024. "Multi-objective optimization strategy for regional multi-energy systems integrated with medium-high temperature solar thermal technology," Energy, Elsevier, vol. 300(C).
- Natalia Ivaneth Luna Alvarino & Vladimir Sousa Santos & Jairo Ricardo González, 2024. "Design of Photovoltaic Systems in Industrial Electrical Systems Considering Power Quality," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 142-153, May.
- Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
- Altin, Cemil, 2024. "Investigation of the effects of synthetic wind speed parameters and wind speed distribution on system size and cost in hybrid renewable energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
- Wang, Hao & Yi, Minyi & Zhang, Zutao & Zhang, Hexiang & Liu, Jizong & Zhu, Zhongyin & Wang, Qijun & Yuan, Yanping, 2023. "A wind-solar energy harvester based on airflow enhancement mechanism for rail-side devices," Energy, Elsevier, vol. 283(C).
- Veljanovski, N. & ÄŒepin, M., 2024. "Event tree-based risk and financial assessment for power plants," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
- Rasool, Muhammad Haseeb & Taylan, Onur & Perwez, Usama & Batunlu, Canras, 2023. "Comparative assessment of multi-objective optimization of hybrid energy storage system considering grid balancing," Renewable Energy, Elsevier, vol. 216(C).
- Yadav, Subhash & Kumar, Pradeep & Kumar, Ashwani, 2024. "Techno-economic assessment of hybrid renewable energy system with multi energy storage system using HOMER," Energy, Elsevier, vol. 297(C).
- Zhao, Yi-Bo & Dong, Xiao-Jian & Shen, Jia-Ni & He, Yi-Jun, 2024. "Simultaneous sizing and scheduling optimization for PV-wind-battery hybrid systems with a modified battery lifetime model: A high-resolution analysis in China," Applied Energy, Elsevier, vol. 360(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
- Naderipour, Amirreza & Ramtin, Amir Reza & Abdullah, Aldrin & Marzbali, Massoomeh Hedayati & Nowdeh, Saber Arabi & Kamyab, Hesam, 2022. "Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis," Energy, Elsevier, vol. 239(PD).
- Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
- Maheri, Alireza & Unsal, Ibrahim & Mahian, Omid, 2022. "Multiobjective optimisation of hybrid wind-PV-battery-fuel cell-electrolyser-diesel systems: An integrated configuration-size formulation approach," Energy, Elsevier, vol. 241(C).
- Amara, Sihem & Toumi, Sana & Salah, Chokri Ben & Saidi, Abdelaziz Salah, 2021. "Improvement of techno-economic optimal sizing of a hybrid off-grid micro-grid system," Energy, Elsevier, vol. 233(C).
- Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).
- Adoum Abdoulaye, Mahamat & Waita, Sebastian & Wabuge Wekesa, Cyrus & Mwabora, Julius Mwakondo, 2024. "Optimal sizing of an off-grid and grid-connected hybrid photovoltaic-wind system with battery and fuel cell storage system: A techno-economic, environmental, and social assessment," Applied Energy, Elsevier, vol. 365(C).
- Singh, Poonam & Pandit, Manjaree & Srivastava, Laxmi, 2023. "Multi-objective optimal sizing of hybrid micro-grid system using an integrated intelligent technique," Energy, Elsevier, vol. 269(C).
- Lin, Xing-Min & Kireeva, Natalia & Timoshin, A.V. & Naderipour, Amirreza & Abdul-Malek, Zulkurnain & Kamyab, Hesam, 2021. "A multi-criteria framework for designing of stand-alone and grid-connected photovoltaic, wind, battery clean energy system considering reliability and economic assessment," Energy, Elsevier, vol. 224(C).
- Sadeghi, Delnia & Ahmadi, Seyed Ehsan & Amiri, Nima & Satinder, & Marzband, Mousa & Abusorrah, Abdullah & Rawa, Muhyaddin, 2022. "Designing, optimizing and comparing distributed generation technologies as a substitute system for reducing life cycle costs, CO2 emissions, and power losses in residential buildings," Energy, Elsevier, vol. 253(C).
- Das, Barun K. & Hasan, Mahmudul, 2021. "Optimal sizing of a stand-alone hybrid system for electric and thermal loads using excess energy and waste heat," Energy, Elsevier, vol. 214(C).
- Li, Rong & Guo, Su & Yang, Yong & Liu, Deyou, 2020. "Optimal sizing of wind/ concentrated solar plant/ electric heater hybrid renewable energy system based on two-stage stochastic programming," Energy, Elsevier, vol. 209(C).
- Güven, Aykut Fatih & Yörükeren, Nuran & Samy, Mohamed Mahmoud, 2022. "Design optimization of a stand-alone green energy system of university campus based on Jaya-Harmony Search and Ant Colony Optimization algorithms approaches," Energy, Elsevier, vol. 253(C).
- Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
- Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
- Mousavi, Seyed Ali & Toopshekan, Ashkan & Mehrpooya, Mehdi & Delpisheh, Mostafa, 2023. "Comprehensive exergetic performance assessment and techno-financial optimization of off-grid hybrid renewable configurations with various dispatch strategies and solar tracking systems," Renewable Energy, Elsevier, vol. 210(C), pages 40-63.
- Mohammed Kharrich & Salah Kamel & Mohamed H. Hassan & Salah K. ElSayed & Ibrahim B. M. Taha, 2021. "An Improved Heap-Based Optimizer for Optimal Design of a Hybrid Microgrid Considering Reliability and Availability Constraints," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
- Homeyra Akter & Harun Or Rashid Howlader & Ahmed Y. Saber & Paras Mandal & Hiroshi Takahashi & Tomonobu Senjyu, 2021. "Optimal Sizing of Hybrid Microgrid in a Remote Island Considering Advanced Direct Load Control for Demand Response and Low Carbon Emission," Energies, MDPI, vol. 14(22), pages 1-19, November.
- Daniel Kitamura & Leonardo Willer & Bruno Dias & Tiago Soares, 2023. "Risk-Averse Stochastic Programming for Planning Hybrid Electrical Energy Systems: A Brazilian Case," Energies, MDPI, vol. 16(3), pages 1-16, February.
- Hemmati, S. & Ghaderi, S.F. & Ghazizadeh, M.S., 2018. "Sustainable energy hub design under uncertainty using Benders decomposition method," Energy, Elsevier, vol. 143(C), pages 1029-1047.
More about this item
Keywords
Improving reliability; Cost and emission; Hybrid PV/Wind/battery system; Grid-connected system; Vanadium redox battery storage; Artificial electric field algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:257:y:2022:i:c:s0360544222015821. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.