IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics096014812400435x.html
   My bibliography  Save this article

Performance evaluation of a partially-filled porous foam cylindrical tubular receiver realizing Ni foam material reduction

Author

Listed:
  • Wu, Ze
  • Li, Xiao-Lei
  • Chen, Xue
  • Xia, Xin-Lin

Abstract

The optimization of metal foam structure parameters is crucial for enhancing the heat transfer and pressure drop performance of cylindrical tube heat exchangers. In this study, thermal output performance of 16 different nickel foam-filled solar receivers with varying thicknesses and positions is numerically simulate. An optical-thermal conversion model is established using the Monte Carlo ray tracing (MCRT) method and user-defined functions. The influences of foam filling thickness and position on heat absorber, wall hot spot distribution, heat loss type, thermal efficiency, pressure drop, thermohydraulic performance, exergy loss, and outlet temperature were analyzed. Furthermore, a multi-objective optimization algorithm called non-dominated sorting genetic algorithm II (NSGA II) is used to generate the best trade-off solutions between improvement of thermal efficiency and pressure drop. The results show that enhancing the thickness of the filled foam within the CTR tube enhances thermal efficiency and elevates pressure drop. However, optimizing the length and filling position of the foam can effectively mitigate excessive pressure drop caused by longer foam, without compromising thermal efficiency. This approach results in a reduced pressure drop while maintaining optimal performance. The optimal solution of multi-objective optimization is that the 123 mm thickness foam is filled at 0 mm from the inlet of the tube, and the pressure drop and thermal efficiency of the solar receiver are 830.2Pa and 83.1 %, respectively, when the mass flow rate is 0.01 kg/s.

Suggested Citation

  • Wu, Ze & Li, Xiao-Lei & Chen, Xue & Xia, Xin-Lin, 2024. "Performance evaluation of a partially-filled porous foam cylindrical tubular receiver realizing Ni foam material reduction," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s096014812400435x
    DOI: 10.1016/j.renene.2024.120370
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812400435X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Dong Gyun & Lee, Dong Keun & Choi, Jong Min & Shin, Dong Kyu & Kim, Min Soo, 2020. "Study on the metal foam flow field with porosity gradient in the polymer electrolyte membrane fuel cell," Renewable Energy, Elsevier, vol. 156(C), pages 931-941.
    2. Du, Shen & Xia, Tian & He, Ya-Ling & Li, Zeng-Yao & Li, Dong & Xie, Xiang-Qian, 2020. "Experiment and optimization study on the radial graded porous volumetric solar receiver matching non-uniform solar flux distribution," Applied Energy, Elsevier, vol. 275(C).
    3. Li, Hongyang & Hu, Chengzhi & He, Yichuan & Tang, Dawei & Wang, Kuiming & Hu, Xianfeng, 2021. "Visualized-experimental investigation on the energy storage performance of PCM infiltrated in the metal foam with varying pore densities," Energy, Elsevier, vol. 237(C).
    4. Conroy, Tim & Collins, Maurice N. & Grimes, Ronan, 2020. "A review of steady-state thermal and mechanical modelling on tubular solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Wu, Zhiyong & Caliot, Cyril & Bai, Fengwu & Flamant, Gilles & Wang, Zhifeng & Zhang, Jinsong & Tian, Chong, 2010. "Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications," Applied Energy, Elsevier, vol. 87(2), pages 504-513, February.
    6. Peng, Hao & Li, Meilin & Liang, Xingang, 2020. "Thermal-hydraulic and thermodynamic performance of parabolic trough solar receiver partially filled with gradient metal foam," Energy, Elsevier, vol. 211(C).
    7. Avila-Marin, Antonio L., 2022. "CFD parametric analysis of wire meshes open volumetric receivers with axial-varied porosity and comparison with small-scale solar receiver tests," Renewable Energy, Elsevier, vol. 193(C), pages 1094-1105.
    8. Hu, Haitao & Zhao, Yaxin & Li, Yuhan, 2023. "Research progress on flow and heat transfer characteristics of fluids in metal foams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    9. Tan, Weng Cheong & Saw, Lip Huat & Thiam, Hui San & Xuan, Jin & Cai, Zuansi & Yew, Ming Chian, 2018. "Overview of porous media/metal foam application in fuel cells and solar power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 181-197.
    10. Wang, P. & Liu, D.Y. & Xu, C. & Xia, L. & Zhou, L., 2016. "A unified heat transfer model in a pressurized volumetric solar receivers," Renewable Energy, Elsevier, vol. 99(C), pages 663-672.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, P. & Li, J.B. & Xu, R.N. & Jiang, P.X., 2021. "Non-uniform and volumetric effect on the hydrodynamic and thermal characteristic in a unit solar absorber," Energy, Elsevier, vol. 225(C).
    2. Carlos E. Arreola-Ramos & Omar Álvarez-Brito & Juan Daniel Macías & Aldo Javier Guadarrama-Mendoza & Manuel A. Ramírez-Cabrera & Armando Rojas-Morin & Patricio J. Valadés-Pelayo & Heidi Isabel Villafá, 2021. "Experimental Evaluation and Modeling of Air Heating in a Ceramic Foam Volumetric Absorber by Effective Parameters," Energies, MDPI, vol. 14(9), pages 1-15, April.
    3. Li, J.B. & Wang, P. & Liu, D.Y., 2022. "Optimization on the gradually varied pore structure distribution for the irradiated absorber," Energy, Elsevier, vol. 240(C).
    4. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    5. Zhang, Shengchun & Wang, Zhifeng & Wu, Zhiyong & Bai, Fengwu & Huang, Pingrui, 2019. "Numerical investigation of the heat transport in a very loose packed granular bed air receiver with a non-uniform energy flux distribution," Renewable Energy, Elsevier, vol. 138(C), pages 987-998.
    6. Pitot de la Beaujardiere, Jean-Francois P. & Reuter, Hanno C.R., 2018. "A review of performance modelling studies associated with open volumetric receiver CSP plant technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3848-3862.
    7. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Carballo, Jose Antonio & Carra, Maria Elena & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "CFD analysis of the performance impact of geometrical shape on volumetric absorbers in a standard cup," Renewable Energy, Elsevier, vol. 201(P1), pages 256-272.
    8. Gentile, Giancarlo & Picotti, Giovanni & Binotti, Marco & Cholette, Michael E. & Manzolini, Giampaolo, 2024. "A comprehensive methodology for the design of solar tower external receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    9. Jerzy Hapanowicz & Adriana Szydłowska & Jacek Wydrych, 2022. "Experimental and Prenemilary Numerical Evaluation of Pressure Drops under the Conditions of the Stratified Gas-Liquid Flow in a Horizontal Pipe Filled with Metal Foam," Energies, MDPI, vol. 15(23), pages 1-22, November.
    10. Wang, Zilong & Zhu, Mengshuai & Zhang, Hua & Zhou, Ying & Sun, Xiangxin & Dou, Binlin & Wu, Weidong & Zhang, Guanhua & Jiang, Long, 2023. "Experimental and simulation study on the heat transfer mechanism and heat storage performance of copper metal foam composite paraffin wax during melting process," Energy, Elsevier, vol. 272(C).
    11. Natalia Rydalina & Elena Antonova & Irina Akhmetova & Svetlana Ilyashenko & Olga Afanaseva & Vincenzo Bianco & Alexander Fedyukhin, 2020. "Analysis of the Efficiency of Using Heat Exchangers with Porous Inserts in Heat and Gas Supply Systems," Energies, MDPI, vol. 13(22), pages 1-13, November.
    12. Xing, Ji & Liu, Zhenyi & Huang, Ping & Feng, Changgen & Zhou, Yi & Sun, Ruiyan & Wang, Shigang, 2014. "CFD validation of scaling rules for reduced-scale field releases of carbon dioxide," Applied Energy, Elsevier, vol. 115(C), pages 525-530.
    13. Neber, Matthew & Lee, Hohyun, 2012. "Design of a high temperature cavity receiver for residential scale concentrated solar power," Energy, Elsevier, vol. 47(1), pages 481-487.
    14. Guilong Dai & Jiangfei Huangfu & Xiaoyu Wang & Shenghua Du & Tian Zhao, 2023. "A Review of Radiative Heat Transfer in Fixed-Bed Particle Solar Receivers," Sustainability, MDPI, vol. 15(13), pages 1-37, June.
    15. Wang, Wen-Qi & Li, Ming-Jia & Cheng, Ze-Dong & Li, Dong & Liu, Zhan-Bin, 2021. "Coupled optical-thermal-stress characteristics of a multi-tube external molten salt receiver for the next generation concentrating solar power," Energy, Elsevier, vol. 233(C).
    16. Zhou-Qiao Dai & Xu Ma & Xin-Yuan Tang & Ren-Zhong Zhang & Wei-Wei Yang, 2023. "Solar-Thermal-Chemical Integrated Design of a Cavity-Type Solar-Driven Methane Dry Reforming Reactor," Energies, MDPI, vol. 16(6), pages 1-21, March.
    17. Chen, Xi & Yang, Chen & Sun, Yun & Liu, Qinxiao & Wan, Zhongmin & Kong, Xiangzhong & Tu, Zhengkai & Wang, Xiaodong, 2022. "Water management and structure optimization study of nickel metal foam as flow distributors in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 309(C).
    18. Halimi, Mohammed & El Amrani, Aumeur & Messaoudi, Choukri, 2021. "New experimental investigation of the circumferential temperature uniformity for a PTC absorber," Energy, Elsevier, vol. 234(C).
    19. Zhang, Hao & Shuai, Yong & Lougou, Bachirou Guene & Jiang, Boshu & Wang, Fuqiang & Cheng, Ziming & Tan, Heping, 2020. "Effects of multilayer porous ceramics on thermochemical energy conversion and storage efficiency in solar dry reforming of methane reactor," Applied Energy, Elsevier, vol. 265(C).
    20. Zaversky, Fritz & Aldaz, Leticia & Sánchez, Marcelino & Ávila-Marín, Antonio L. & Roldán, M. Isabel & Fernández-Reche, Jesús & Füssel, Alexander & Beckert, Wieland & Adler, Jörg, 2018. "Numerical and experimental evaluation and optimization of ceramic foam as solar absorber – Single-layer vs multi-layer configurations," Applied Energy, Elsevier, vol. 210(C), pages 351-375.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s096014812400435x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.