IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v237y2021ics0360544221017886.html
   My bibliography  Save this article

Visualized-experimental investigation on the energy storage performance of PCM infiltrated in the metal foam with varying pore densities

Author

Listed:
  • Li, Hongyang
  • Hu, Chengzhi
  • He, Yichuan
  • Tang, Dawei
  • Wang, Kuiming
  • Hu, Xianfeng

Abstract

To further enhance the melting rate of the metal foam composite phase change material (MFCPCM), we took partial and gradient optimizations on the pore densities of metal foams. The partially optimized models, including Partial-80-5-5 and Partial-5-5-80, were compared with the Uniform-5 model. Results show that the Partial-80-5-5 model has the most developed melting among the three models. It illustrates that enlarging the pore density in the top region is conducive to accelerating the whole melting process. Besides, through a further comparison of the Partial-80-5-5, Partial-40-5-5, and Partial-20-5-5 models, we concluded that the larger the pore-density in the top region is, the faster the melting is. Subsequently, the gradient optimizations, including Gradient-80-20-5 and Gradient-80-40-5 models, were experimented with and analyzed. It was obtained that the Gradient-80-40-5 model has the fastest melting rate among all models. The inhibition of the large pore density on natural convection at the top and middle regions causes a strong vortex at the bottom region, so the melting process is significantly reinforced. Through the optimizations on the metal foam's pore density, the energy storage rate can achieve a prominent enhancement.

Suggested Citation

  • Li, Hongyang & Hu, Chengzhi & He, Yichuan & Tang, Dawei & Wang, Kuiming & Hu, Xianfeng, 2021. "Visualized-experimental investigation on the energy storage performance of PCM infiltrated in the metal foam with varying pore densities," Energy, Elsevier, vol. 237(C).
  • Handle: RePEc:eee:energy:v:237:y:2021:i:c:s0360544221017886
    DOI: 10.1016/j.energy.2021.121540
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221017886
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121540?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Shen & Li, Ming-Jia & Ren, Qinlong & Liang, Qi & He, Ya-Ling, 2017. "Pore-scale numerical simulation of fully coupled heat transfer process in porous volumetric solar receiver," Energy, Elsevier, vol. 140(P1), pages 1267-1275.
    2. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Gunjo, Dawit Gudeta & Jena, Smruti Ranjan & Mahanta, Pinakeswar & Robi, P.S., 2018. "Melting enhancement of a latent heat storage with dispersed Cu, CuO and Al2O3 nanoparticles for solar thermal application," Renewable Energy, Elsevier, vol. 121(C), pages 652-665.
    4. Zhang, Long & Zhou, Kechao & Wei, Quiping & Ma, Li & Ye, Wentao & Li, Haichao & Zhou, Bo & Yu, Zhiming & Lin, Cheng-Te & Luo, Jingting & Gan, Xueping, 2019. "Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage," Applied Energy, Elsevier, vol. 233, pages 208-219.
    5. Chen, Guijun & Su, Yunpeng & Jiang, Dongyue & Pan, Lujun & Li, Shuai, 2020. "An experimental and numerical investigation on a paraffin wax/graphene oxide/carbon nanotubes composite material for solar thermal storage applications," Applied Energy, Elsevier, vol. 264(C).
    6. Yang, Xiaohu & Wei, Pan & Wang, Xinyi & He, Ya-Ling, 2020. "Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam," Applied Energy, Elsevier, vol. 268(C).
    7. Dong, Kaixin & Sheng, Nan & Zou, Deqiu & Wang, Cheng & Shimono, Kenji & Akiyama, Tomohiro & Nomura, Takahiro, 2020. "A high-thermal-conductivity, high-durability phase-change composite using a carbon fibre sheet as a supporting matrix," Applied Energy, Elsevier, vol. 264(C).
    8. Hashem Zadeh, Seyed Mohsen & Mehryan, S.A.M. & Ghalambaz, Mohammad & Ghodrat, Maryam & Young, John & Chamkha, Ali, 2020. "Hybrid thermal performance enhancement of a circular latent heat storage system by utilizing partially filled copper foam and Cu/GO nano-additives," Energy, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mao, Qianjun & Zhu, Yuanyuan & Li, Tao, 2023. "Study on heat storage performance of a novel bifurcated finned shell-tube heat storage tank," Energy, Elsevier, vol. 263(PA).
    2. Yousefi, Esmaeil & Nejad, Ali Abbas & Rezania, Alireza, 2022. "Higher power output in thermoelectric generator integrated with phase change material and metal foams under transient boundary condition," Energy, Elsevier, vol. 256(C).
    3. Wang, Zilong & Zhu, Mengshuai & Zhang, Hua & Zhou, Ying & Sun, Xiangxin & Dou, Binlin & Wu, Weidong & Zhang, Guanhua & Jiang, Long, 2023. "Experimental and simulation study on the heat transfer mechanism and heat storage performance of copper metal foam composite paraffin wax during melting process," Energy, Elsevier, vol. 272(C).
    4. Li, Tao & Zhu, Yuanyuan & Hu, Xinlei & Mao, Qianjun, 2023. "Numerical investigation of the influence of unsteady inlet temperature on heat storage performance of a novel bifurcated finned shell-tube heat storage tank," Energy, Elsevier, vol. 280(C).
    5. Nemati, H. & Souriaee, V. & Habibi, M. & Vafai, Kambiz, 2023. "Design and Taguchi-based optimization of the latent heat thermal storage in the form of structured porous-coated pipe," Energy, Elsevier, vol. 263(PD).
    6. Wu, Ze & Li, Xiao-Lei & Chen, Xue & Xia, Xin-Lin, 2024. "Performance evaluation of a partially-filled porous foam cylindrical tubular receiver realizing Ni foam material reduction," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shuai & Yan, Yuying, 2022. "Evaluation of discharging performance of molten salt/ceramic foam composite phase change material in a shell-and-tube latent heat thermal energy storage unit," Renewable Energy, Elsevier, vol. 198(C), pages 1210-1223.
    2. Zuo, Hongyang & Wu, Mingyang & Zeng, Kuo & Zhou, Yuan & Kong, Jiayue & Qiu, Yi & Lin, Meng & Flamant, Gilles, 2021. "Numerical investigation and optimal design of partially filled sectorial metal foam configuration in horizontal latent heat storage unit," Energy, Elsevier, vol. 237(C).
    3. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    5. Zhang, Pengfei & Wang, Yilin & Qiu, Yu & Yan, Hongjie & Wang, Zhaolong & Li, Qing, 2024. "Novel composite phase change materials supported by oriented carbon fibers for solar thermal energy conversion and storage," Applied Energy, Elsevier, vol. 358(C).
    6. Cui, Wei & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Combined effects of nanoparticles and ultrasonic field on thermal energy storage performance of phase change materials with metal foam," Applied Energy, Elsevier, vol. 309(C).
    7. Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    8. Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
    9. Yang, Sheng & Shao, Xue-Feng & Luo, Jia-Hao & Baghaei Oskouei, Seyedmohsen & Bayer, Özgür & Fan, Li-Wu, 2023. "A novel cascade latent heat thermal energy storage system consisting of erythritol and paraffin wax for deep recovery of medium-temperature industrial waste heat," Energy, Elsevier, vol. 265(C).
    10. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Carballo, Jose Antonio & Carra, Maria Elena & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "CFD analysis of the performance impact of geometrical shape on volumetric absorbers in a standard cup," Renewable Energy, Elsevier, vol. 201(P1), pages 256-272.
    11. Jiang, Liang & Lei, Yuan & Liu, Qinfeng & Lei, Jingxin, 2020. "Polyethylene glycol based self-luminous phase change materials for both thermal and light energy storage," Energy, Elsevier, vol. 193(C).
    12. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    13. Jiangxu Huang & Kun He & Lei Wang, 2021. "Pore-Scale Investigation on Natural Convection Melting in a Square Cavity with Gradient Porous Media," Energies, MDPI, vol. 14(14), pages 1-19, July.
    14. Li, Jiyan & Long, Yong & Jing, Yanju & Zhang, Jiaqing & Du, Silu & Jiao, Rui & Sun, Hanxue & Zhu, Zhaoqi & Liang, Weidong & Li, An, 2024. "Superhydrophobic multi-shell hollow microsphere confined phase change materials for solar photothermal conversion and energy storage," Applied Energy, Elsevier, vol. 365(C).
    15. Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
    16. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Zhang, Shuai & Li, Ying & Yan, Yuying, 2024. "Hybrid sensible-latent heat thermal energy storage using natural stones to enhance heat transfer: Energy, exergy, and economic analysis," Energy, Elsevier, vol. 286(C).
    18. Cabeza, Luisa F. & de Gracia, Alvaro & Zsembinszki, Gabriel & Borri, Emiliano, 2021. "Perspectives on thermal energy storage research," Energy, Elsevier, vol. 231(C).
    19. Ma, Ying & Yang, Heng & Zuo, Hongyan & Ma, Yi & Zuo, Qingsong & Chen, Ying & He, Xiaoxiang & Wei, Rongrong, 2023. "Three-dimensional EG@MOF matrix composite phase change materials for high efficiency battery cooling," Energy, Elsevier, vol. 278(C).
    20. Franco Dominici & Adio Miliozzi & Luigi Torre, 2021. "Thermal Properties of Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage," Energies, MDPI, vol. 14(21), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:237:y:2021:i:c:s0360544221017886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.