A unified heat transfer model in a pressurized volumetric solar receivers
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2016.07.030
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, P. & Liu, D.Y. & Xu, C., 2013. "Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams," Applied Energy, Elsevier, vol. 102(C), pages 449-460.
- Roldán, M.I. & Zarza, E. & Casas, J.L., 2015. "Modelling and testing of a solar-receiver system applied to high-temperature processes," Renewable Energy, Elsevier, vol. 76(C), pages 608-618.
- Roldán, M.I. & Smirnova, O. & Fend, T. & Casas, J.L. & Zarza, E., 2014. "Thermal analysis and design of a volumetric solar absorber depending on the porosity," Renewable Energy, Elsevier, vol. 62(C), pages 116-128.
- Capuano, Raffaele & Fend, Thomas & Schwarzbözl, Peter & Smirnova, Olena & Stadler, Hannes & Hoffschmidt, Bernhard & Pitz-Paal, Robert, 2016. "Numerical models of advanced ceramic absorbers for volumetric solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 656-665.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li Wang & Long Yang & Junjie Liu & Pei Wang, 2021. "Study on Spectral Radiative Heat Transfer Characteristics of a Windowed Receiver with Particle Curtain," Energies, MDPI, vol. 14(10), pages 1-16, May.
- Wu, Ze & Li, Xiao-Lei & Chen, Xue & Xia, Xin-Lin, 2024. "Performance evaluation of a partially-filled porous foam cylindrical tubular receiver realizing Ni foam material reduction," Renewable Energy, Elsevier, vol. 226(C).
- Avila-Marin, Antonio L. & Alvarez de Lara, Monica & Fernandez-Reche, Jesus, 2018. "Experimental results of gradual porosity volumetric air receivers with wire meshes," Renewable Energy, Elsevier, vol. 122(C), pages 339-353.
- Kasaeian, Alibakhsh & Barghamadi, Hossein & Pourfayaz, Fathollah, 2017. "Performance comparison between the geometry models of multi-channel absorbers in solar volumetric receivers," Renewable Energy, Elsevier, vol. 105(C), pages 1-12.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pitot de la Beaujardiere, Jean-Francois P. & Reuter, Hanno C.R., 2018. "A review of performance modelling studies associated with open volumetric receiver CSP plant technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3848-3862.
- Andrade, L.A. & Barrozo, M.A.S. & Vieira, L.G.M., 2016. "A study on dynamic heating in solar dish concentrators," Renewable Energy, Elsevier, vol. 87(P1), pages 501-508.
- Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "Experimental study of innovative periodic cellular structures as air volumetric absorbers," Renewable Energy, Elsevier, vol. 184(C), pages 391-404.
- Kasaeian, Alibakhsh & Barghamadi, Hossein & Pourfayaz, Fathollah, 2017. "Performance comparison between the geometry models of multi-channel absorbers in solar volumetric receivers," Renewable Energy, Elsevier, vol. 105(C), pages 1-12.
- Li, J.B. & Wang, P. & Liu, D.Y., 2022. "Optimization on the gradually varied pore structure distribution for the irradiated absorber," Energy, Elsevier, vol. 240(C).
- Bo Yang & Mohammad Mohsen Sarafraz & Maziar Arjomandi, 2021. "Thermal Performance Characteristics of a Microchannel Gas Heater for Solar Heating Applications," Energies, MDPI, vol. 14(22), pages 1-14, November.
- Wang, P. & Li, J.B. & Bai, F.W. & Liu, D.Y. & Xu, C. & Zhao, L. & Wang, Z.F., 2017. "Experimental and theoretical evaluation on the thermal performance of a windowed volumetric solar receiver," Energy, Elsevier, vol. 119(C), pages 652-661.
- Avila-Marin, A.L. & Fernandez-Reche, J. & Martinez-Tarifa, A., 2019. "Modelling strategies for porous structures as solar receivers in central receiver systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 15-33.
- Shahzada Zaman Shuja & Bekir Sami Yilbas & Hussain Al-Qahtani, 2019. "Thermal Assessment of Selective Solar Troughs," Energies, MDPI, vol. 12(16), pages 1-20, August.
- Barreto, Germilly & Canhoto, Paulo & Collares-Pereira, Manuel, 2018. "Three-dimensional modelling and analysis of solar radiation absorption in porous volumetric receivers," Applied Energy, Elsevier, vol. 215(C), pages 602-614.
- Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
- Zeng, Zhichen & Ni, Dong & Xiao, Gang, 2022. "Real-time heliostat field aiming strategy optimization based on reinforcement learning," Applied Energy, Elsevier, vol. 307(C).
- Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
- Halimi, Mohammed & El Amrani, Aumeur & Messaoudi, Choukri, 2021. "New experimental investigation of the circumferential temperature uniformity for a PTC absorber," Energy, Elsevier, vol. 234(C).
- Zaversky, Fritz & Aldaz, Leticia & Sánchez, Marcelino & Ávila-Marín, Antonio L. & Roldán, M. Isabel & Fernández-Reche, Jesús & Füssel, Alexander & Beckert, Wieland & Adler, Jörg, 2018. "Numerical and experimental evaluation and optimization of ceramic foam as solar absorber – Single-layer vs multi-layer configurations," Applied Energy, Elsevier, vol. 210(C), pages 351-375.
- Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K. & Ahmad, Abdalqader, 2017. "Numerical investigation of pitch value on thermal performance of solar receiver for solar powered Brayton cycle application," Energy, Elsevier, vol. 119(C), pages 523-539.
- Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
- Chang, Chun & Sciacovelli, Adriano & Wu, Zhiyong & Li, Xin & Li, Yongliang & Zhao, Mingzhi & Deng, Jie & Wang, Zhifeng & Ding, Yulong, 2018. "Enhanced heat transfer in a parabolic trough solar receiver by inserting rods and using molten salt as heat transfer fluid," Applied Energy, Elsevier, vol. 220(C), pages 337-350.
- Cheng, Ze-Dong & Men, Jing-Jing & Liu, Shi-Cheng & He, Ya-Ling, 2019. "Three-dimensional numerical study on a novel parabolic trough solar receiver-reactor of a locally-installed Kenics static mixer for efficient hydrogen production," Applied Energy, Elsevier, vol. 250(C), pages 131-146.
- Wang, Yinfeng & Lu, Beibei & Chen, Haijun & Fan, Hongtu & Taylor, Robert A. & Zhu, Yuezhao, 2017. "Experimental investigation of the thermal performance of a horizontal two-phase loop thermosiphon suitable for solar parabolic trough receivers operating at 200–400 °C," Energy, Elsevier, vol. 132(C), pages 289-304.
More about this item
Keywords
Pressurized volumetric solar receiver; Windowed cavity; Porous medium; Radiation transfer; Local thermal non-equilibrium;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:663-672. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.