Design of a high temperature cavity receiver for residential scale concentrated solar power
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2012.09.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wu, Zhiyong & Caliot, Cyril & Bai, Fengwu & Flamant, Gilles & Wang, Zhifeng & Zhang, Jinsong & Tian, Chong, 2010. "Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications," Applied Energy, Elsevier, vol. 87(2), pages 504-513, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Thirunavukkarasu, V. & Cheralathan, M., 2020. "An experimental study on energy and exergy performance of a spiral tube receiver for solar parabolic dish concentrator," Energy, Elsevier, vol. 192(C).
- Zou, Chongzhe & Zhang, Yanping & Falcoz, Quentin & Neveu, Pierre & Zhang, Cheng & Shu, Weicheng & Huang, Shuhong, 2017. "Design and optimization of a high-temperature cavity receiver for a solar energy cascade utilization system," Renewable Energy, Elsevier, vol. 103(C), pages 478-489.
- Ebadi, Hossein & Cammi, Antonio & Difonzo, Rosa & Rodríguez, José & Savoldi, Laura, 2023. "Experimental investigation on an air tubular absorber enhanced with Raschig Rings porous medium in a solar furnace," Applied Energy, Elsevier, vol. 342(C).
- Jianfeng Lu & Yarong Wang & Jing Ding, 2020. "Nonuniform Heat Transfer Model and Performance of Molten Salt Cavity Receiver," Energies, MDPI, vol. 13(4), pages 1-19, February.
- Jafrancesco, D. & Sansoni, P. & Francini, F. & Fontani, D., 2016. "Strategy and criteria to optically design a solar concentration plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1066-1073.
- Rafique, Muhammad M. & Nathan, Graham & Saw, Woei, 2021. "A mathematical model to assess the influence of transients on a refractory-lined solar receiver," Renewable Energy, Elsevier, vol. 167(C), pages 217-235.
- Azzouzi, Djelloul & Boumeddane, Boussad & Abene, Abderahmane, 2017. "Experimental and analytical thermal analysis of cylindrical cavity receiver for solar dish," Renewable Energy, Elsevier, vol. 106(C), pages 111-121.
- Ambra Giovannelli & Muhammad Anser Bashir, 2017. "Charge and Discharge Analyses of a PCM Storage System Integrated in a High-Temperature Solar Receiver," Energies, MDPI, vol. 10(12), pages 1-13, November.
- Loni, R. & Kasaeian, A.B. & Askari Asli-Ardeh, E. & Ghobadian, B., 2016. "Optimizing the efficiency of a solar receiver with tubular cylindrical cavity for a solar-powered organic Rankine cycle," Energy, Elsevier, vol. 112(C), pages 1259-1272.
- Loni, R. & Kasaeian, A.B. & Askari Asli-Ardeh, E. & Ghobadian, B. & Gorjian, Sh, 2018. "Experimental and numerical study on dish concentrator with cubical and cylindrical cavity receivers using thermal oil," Energy, Elsevier, vol. 154(C), pages 168-181.
- Kasaeian, Alibakhsh & Kouravand, Amir & Vaziri Rad, Mohammad Amin & Maniee, Siavash & Pourfayaz, Fathollah, 2021. "Cavity receivers in solar dish collectors: A geometric overview," Renewable Energy, Elsevier, vol. 169(C), pages 53-79.
- Garrido, Jorge & Aichmayer, Lukas & Wang, Wujun & Laumert, Björn, 2017. "Characterization of the KTH high-flux solar simulator combining three measurement methods," Energy, Elsevier, vol. 141(C), pages 2091-2099.
- Lim, Jin Han & Dally, Bassam B. & Chinnici, Alfonso & Nathan, Graham J., 2017. "Techno-economic evaluation of modular hybrid concentrating solar power systems," Energy, Elsevier, vol. 129(C), pages 158-170.
- Azzouzi, Djelloul & Bourorga, Houssam eddine & Belainine, Khathir abdelrahim & Boumeddane, Boussad, 2018. "Experimental study of a designed solar parabolic trough with large rim angle," Renewable Energy, Elsevier, vol. 125(C), pages 495-500.
- Ji-Qiang Li & Jeong-Tae Kwon & Seon-Jun Jang, 2020. "The Power and Efficiency Analyses of the Cylindrical Cavity Receiver on the Solar Stirling Engine," Energies, MDPI, vol. 13(21), pages 1-17, November.
- Godini, Ali & Kheradmand, Saeid, 2021. "Optimization of volumetric solar receiver geometry and porous media specifications," Renewable Energy, Elsevier, vol. 172(C), pages 574-581.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Shengchun & Wang, Zhifeng & Wu, Zhiyong & Bai, Fengwu & Huang, Pingrui, 2019. "Numerical investigation of the heat transport in a very loose packed granular bed air receiver with a non-uniform energy flux distribution," Renewable Energy, Elsevier, vol. 138(C), pages 987-998.
- Pitot de la Beaujardiere, Jean-Francois P. & Reuter, Hanno C.R., 2018. "A review of performance modelling studies associated with open volumetric receiver CSP plant technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3848-3862.
- Jerzy Hapanowicz & Adriana Szydłowska & Jacek Wydrych, 2022. "Experimental and Prenemilary Numerical Evaluation of Pressure Drops under the Conditions of the Stratified Gas-Liquid Flow in a Horizontal Pipe Filled with Metal Foam," Energies, MDPI, vol. 15(23), pages 1-22, November.
- Xing, Ji & Liu, Zhenyi & Huang, Ping & Feng, Changgen & Zhou, Yi & Sun, Ruiyan & Wang, Shigang, 2014. "CFD validation of scaling rules for reduced-scale field releases of carbon dioxide," Applied Energy, Elsevier, vol. 115(C), pages 525-530.
- Zhang, Hao & Shuai, Yong & Lougou, Bachirou Guene & Jiang, Boshu & Wang, Fuqiang & Cheng, Ziming & Tan, Heping, 2020. "Effects of multilayer porous ceramics on thermochemical energy conversion and storage efficiency in solar dry reforming of methane reactor," Applied Energy, Elsevier, vol. 265(C).
- Wang, P. & Li, J.B. & Xu, R.N. & Jiang, P.X., 2021. "Non-uniform and volumetric effect on the hydrodynamic and thermal characteristic in a unit solar absorber," Energy, Elsevier, vol. 225(C).
- Carlos E. Arreola-Ramos & Omar Álvarez-Brito & Juan Daniel Macías & Aldo Javier Guadarrama-Mendoza & Manuel A. Ramírez-Cabrera & Armando Rojas-Morin & Patricio J. Valadés-Pelayo & Heidi Isabel Villafá, 2021. "Experimental Evaluation and Modeling of Air Heating in a Ceramic Foam Volumetric Absorber by Effective Parameters," Energies, MDPI, vol. 14(9), pages 1-15, April.
- Zaversky, Fritz & Aldaz, Leticia & Sánchez, Marcelino & Ávila-Marín, Antonio L. & Roldán, M. Isabel & Fernández-Reche, Jesús & Füssel, Alexander & Beckert, Wieland & Adler, Jörg, 2018. "Numerical and experimental evaluation and optimization of ceramic foam as solar absorber – Single-layer vs multi-layer configurations," Applied Energy, Elsevier, vol. 210(C), pages 351-375.
- He, Y.L. & Cheng, Z.D. & Cui, F.Q. & Li, Z.Y. & Li, D., 2012. "Numerical investigations on a pressurized volumetric receiver: Solar concentrating and collecting modelling," Renewable Energy, Elsevier, vol. 44(C), pages 368-379.
- Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
- Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).
- Tan, Weng Cheong & Saw, Lip Huat & Thiam, Hui San & Xuan, Jin & Cai, Zuansi & Yew, Ming Chian, 2018. "Overview of porous media/metal foam application in fuel cells and solar power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 181-197.
- Li, Qing & Bai, Fengwu & Yang, Bei & Wang, Zhifeng & El Hefni, Baligh & Liu, Sijie & Kubo, Syuichi & Kiriki, Hiroaki & Han, Mingxu, 2016. "Dynamic simulation and experimental validation of an open air receiver and a thermal energy storage system for solar thermal power plant," Applied Energy, Elsevier, vol. 178(C), pages 281-293.
- Roldán, M.I. & Smirnova, O. & Fend, T. & Casas, J.L. & Zarza, E., 2014. "Thermal analysis and design of a volumetric solar absorber depending on the porosity," Renewable Energy, Elsevier, vol. 62(C), pages 116-128.
- Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K., 2016. "The optical efficiency of three different geometries of a small scale cavity receiver for concentrated solar applications," Applied Energy, Elsevier, vol. 179(C), pages 1081-1096.
- Naqiuddin, Nor Haziq & Saw, Lip Huat & Yew, Ming Chian & Yusof, Farazila & Poon, Hiew Mun & Cai, Zuansi & Thiam, Hui San, 2018. "Numerical investigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method," Applied Energy, Elsevier, vol. 222(C), pages 437-450.
- Nimvari, Majid Eshagh & Jouybari, Nima Fallah & Esmaili, Qadir, 2018. "A new approach to mitigate intense temperature gradients in ceramic foam solar receivers," Renewable Energy, Elsevier, vol. 122(C), pages 206-215.
- Li, J.B. & Wang, P. & Liu, D.Y., 2022. "Optimization on the gradually varied pore structure distribution for the irradiated absorber," Energy, Elsevier, vol. 240(C).
- Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
- Gomez-Garcia, Fabrisio & González-Aguilar, José & Olalde, Gabriel & Romero, Manuel, 2016. "Thermal and hydrodynamic behavior of ceramic volumetric absorbers for central receiver solar power plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 648-658.
More about this item
Keywords
Concentrated solar power; Brayton; Residential scale; Receiver; Optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:47:y:2012:i:1:p:481-487. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.