IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124004270.html
   My bibliography  Save this article

Geothermal resource evaluation in the Sichuan Basin and suggestions for the development and utilization of abandoned oil and gas wells

Author

Listed:
  • Zuo, Yinhui
  • Sun, Yigao
  • Zhang, Luquan
  • Zhang, Chao
  • Wang, Yingchun
  • Jiang, Guangzheng
  • Wang, Xiaoguang
  • Zhang, Tao
  • Cui, Longqing

Abstract

In this paper, the potential seven sets of geothermal resources in the Sichuan Basin were evaluated by using a method for rapidly calculating geothermal resources in the sedimentary basins by multi data fusion, and suggestions on geothermal development and utilization are made based on the basic characteristics of abandoned wells in the oil and gas fields. The results show that the Sichuan Basin is rich in geothermal resources. The total resources of 7 sets of thermal reservoirs reach 4.26 × 1013 GJ, of which the Qixia-Maokou Formation has the largest potential geothermal resources, reaching 1.36 × 1013 GJ. The Permian Qixia-Maokou Formation in southern Sichuan Basin has the conditions to prioritize the development of geothermal resources and has the characteristics of the highest temperature of formation water and the largest current and cumulative water production. At the same time, according to the formation temperature of abandoned oil and gas wells, they are divided into two types of wells, and different geothermal resource utilization methods are proposed. The research results can provide a model for the evaluation of geothermal resources in sedimentary basins and a resource basis for the development of geothermal resources in the Sichuan Basin.

Suggested Citation

  • Zuo, Yinhui & Sun, Yigao & Zhang, Luquan & Zhang, Chao & Wang, Yingchun & Jiang, Guangzheng & Wang, Xiaoguang & Zhang, Tao & Cui, Longqing, 2024. "Geothermal resource evaluation in the Sichuan Basin and suggestions for the development and utilization of abandoned oil and gas wells," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124004270
    DOI: 10.1016/j.renene.2024.120362
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Chao & Hu, Shengbiao & Zhang, Shengsheng & Li, Shengtao & Zhang, Linyou & Kong, Yanlong & Zuo, Yinhui & Song, Rongcai & Jiang, Guangzheng & Wang, Zhuting, 2020. "Radiogenic heat production variations in the Gonghe basin, northeastern Tibetan Plateau: Implications for the origin of high-temperature geothermal resources," Renewable Energy, Elsevier, vol. 148(C), pages 284-297.
    2. Shrestha, Anil & Mustafa, Andy Ali & Htike, Myo Myo & You, Vithyea & Kakinaka, Makoto, 2022. "Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy," Renewable Energy, Elsevier, vol. 199(C), pages 419-432.
    3. Lund, Henrik & Skov, Iva Ridjan & Thellufsen, Jakob Zinck & Sorknæs, Peter & Korberg, Andrei David & Chang, Miguel & Mathiesen, Brian Vad & Kany, Mikkel Strunge, 2022. "The role of sustainable bioenergy in a fully decarbonised society," Renewable Energy, Elsevier, vol. 196(C), pages 195-203.
    4. Yujiang He & Xianbiao Bu, 2020. "Performance of Hybrid Single Well Enhanced Geothermal System and Solar Energy for Buildings Heating," Energies, MDPI, vol. 13(10), pages 1-10, May.
    5. Liu, Xiaolei & Falcone, Gioia & Alimonti, Claudio, 2018. "A systematic study of harnessing low-temperature geothermal energy from oil and gas reservoirs," Energy, Elsevier, vol. 142(C), pages 346-355.
    6. Li, Kewen & Bian, Huiyuan & Liu, Changwei & Zhang, Danfeng & Yang, Yanan, 2015. "Comparison of geothermal with solar and wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1464-1474.
    7. Duggal, R. & Rayudu, R. & Hinkley, J. & Burnell, J. & Wieland, C. & Keim, M., 2022. "A comprehensive review of energy extraction from low-temperature geothermal resources in hydrocarbon fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Herc, Luka & Pfeifer, Antun & Duić, Neven, 2022. "Optimization of the possible pathways for gradual energy system decarbonization," Renewable Energy, Elsevier, vol. 193(C), pages 617-633.
    9. R.V., Rohit & R., Vipin Raj & Kiplangat, Dennis C. & R., Veena & Jose, Rajan & Pradeepkumar, A.P. & Kumar, K. Satheesh, 2023. "Tracing the evolution and charting the future of geothermal energy research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    10. Jello, Josiane & Baser, Tugce, 2023. "Utilization of existing hydrocarbon wells for geothermal system development: A review," Applied Energy, Elsevier, vol. 348(C).
    11. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    12. Li, Shengtao & Wen, Dongguang & Feng, Bo & Li, Fengyu & Yue, Dongdong & Zhang, Qiuxia & Wang, Junzhao & Feng, Zhaolong, 2023. "Numerical optimization of geothermal energy extraction from deep karst reservoir in North China," Renewable Energy, Elsevier, vol. 202(C), pages 1071-1085.
    13. Santos, L. & Dahi Taleghani, A. & Elsworth, D., 2022. "Repurposing abandoned wells for geothermal energy: Current status and future prospects," Renewable Energy, Elsevier, vol. 194(C), pages 1288-1302.
    14. Shejiao Wang & Jiahong Yan & Feng Li & Junwen Hu & Kewen Li, 2016. "Exploitation and Utilization of Oilfield Geothermal Resources in China," Energies, MDPI, vol. 9(10), pages 1-13, September.
    15. Templeton, J.D. & Ghoreishi-Madiseh, S.A. & Hassani, F. & Al-Khawaja, M.J., 2014. "Abandoned petroleum wells as sustainable sources of geothermal energy," Energy, Elsevier, vol. 70(C), pages 366-373.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martina Tuschl & Tomislav Kurevija, 2023. "Revitalization Modelling of a Mature Oil Field with Bottom-Type Aquifer into Geothermal Resource—Reservoir Engineering and Techno-Economic Challenges," Energies, MDPI, vol. 16(18), pages 1-27, September.
    2. Jello, Josiane & Baser, Tugce, 2023. "Utilization of existing hydrocarbon wells for geothermal system development: A review," Applied Energy, Elsevier, vol. 348(C).
    3. Anna Chmielowska & Anna Sowiżdżał & Barbara Tomaszewska, 2021. "Prospects of Using Hydrocarbon Deposits from the Autochthonous Miocene Formation (Eastern Carpathian Foredeep, Poland) for Geothermal Purposes," Energies, MDPI, vol. 14(11), pages 1-28, May.
    4. Kurnia, Jundika C. & Putra, Zulfan A. & Muraza, Oki & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2021. "Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia," Renewable Energy, Elsevier, vol. 175(C), pages 868-879.
    5. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    6. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2021. "Retrofitting abandoned petroleum wells as doublet deep borehole heat exchangers for geothermal energy production—a numerical investigation," Renewable Energy, Elsevier, vol. 176(C), pages 115-134.
    7. Cheng, Sharon W.Y. & Kurnia, Jundika C. & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2019. "Optimization of geothermal energy extraction from abandoned oil well with a novel well bottom curvature design utilizing Taguchi method," Energy, Elsevier, vol. 188(C).
    8. Huang, Wenbo & Cao, Wenjiong & Jiang, Fangming, 2018. "A novel single-well geothermal system for hot dry rock geothermal energy exploitation," Energy, Elsevier, vol. 162(C), pages 630-644.
    9. Xiaochuan Wu & Wei Wang & Lin Zhang & Jinxi Wang & Yuelei Zhang & Ye Zhang, 2024. "Deep Geothermal Resources with Respect to Power Generation Potential of the Sinian–Cambrian Formation in Western Chongqing City, Eastern Sichuan Basin, China," Energies, MDPI, vol. 17(16), pages 1-15, August.
    10. Yuhao Zhu & Kewen Li & Changwei Liu & Mahlalela Bhekumuzi Mgijimi, 2019. "Geothermal Power Production from Abandoned Oil Reservoirs Using In Situ Combustion Technology," Energies, MDPI, vol. 12(23), pages 1-21, November.
    11. Chen, Xuyue & Du, Xu & Yang, Jin & Gao, Deli & Zou, Yiqi & He, Qinyi, 2022. "Developing offshore natural gas hydrate from existing oil & gas platform based on a novel multilateral wells system: Depressurization combined with thermal flooding by utilizing geothermal heat from e," Energy, Elsevier, vol. 258(C).
    12. Peng Zhang & Boyun Guo, 2024. "A Feasibility Assessment of Heat Energy Productivity of Geothermal Wells Converted from Oil/Gas Wells," Sustainability, MDPI, vol. 16(2), pages 1-16, January.
    13. Anand, R.S. & Li, Ang & Huang, Wenbo & Chen, Juanwen & Li, Zhibin & Ma, Qingshan & Jiang, Fangming, 2024. "Super-long gravity heat pipe for geothermal energy exploitation - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    14. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Huang, Guangping & Liu, Wei Victor, 2021. "Effects of temperature-dependent property variations on the output capacity prediction of a deep coaxial borehole heat exchanger," Renewable Energy, Elsevier, vol. 165(P1), pages 334-349.
    15. Duggal, R. & Rayudu, R. & Hinkley, J. & Burnell, J. & Wieland, C. & Keim, M., 2022. "A comprehensive review of energy extraction from low-temperature geothermal resources in hydrocarbon fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. Bu, Xianbiao & Ran, Yunmin & Zhang, Dongdong, 2019. "Experimental and simulation studies of geothermal single well for building heating," Renewable Energy, Elsevier, vol. 143(C), pages 1902-1909.
    17. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    19. Trivedi, Jatin & Chakraborty, Dipanwita & Nobanee, Haitham, 2023. "Modelling the growth dynamics of sustainable renewable energy – Flourishing green financing," Energy Policy, Elsevier, vol. 183(C).
    20. Yanara Tranamil-Maripe & José M. Cardemil & Rodrigo Escobar & Diego Morata & Cristóbal Sarmiento-Laurel, 2022. "Assessing the Hybridization of an Existing Geothermal Plant by Coupling a CSP System for Increasing Power Generation," Energies, MDPI, vol. 15(6), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124004270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.