IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4045-d1456652.html
   My bibliography  Save this article

Deep Geothermal Resources with Respect to Power Generation Potential of the Sinian–Cambrian Formation in Western Chongqing City, Eastern Sichuan Basin, China

Author

Listed:
  • Xiaochuan Wu

    (National and Local Joint Engineering Research Center for Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
    Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China)

  • Wei Wang

    (Chongqing Huadi Resources and Environment Technology Co., Ltd., Chongqing 401120, China)

  • Lin Zhang

    (China National Petroleum Corporation Changqing Oilfield Branch Fifth Gas Production Plant, Xi’an 710016, China)

  • Jinxi Wang

    (National and Local Joint Engineering Research Center for Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
    Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China)

  • Yuelei Zhang

    (Chongqing Huadi Resources and Environment Technology Co., Ltd., Chongqing 401120, China)

  • Ye Zhang

    (National and Local Joint Engineering Research Center for Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
    Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China)

Abstract

The Rongchang–Dazu region in western Chongqing (eastern Sichuan Basin, China), known for its seismic activity, is a promising area for deep geothermal resource development; however, practical development is limited. Key geological understandings, such as heat flux, geothermal gradients, the nature of heat sources, thermal reservoir rock characteristics, and the classification of geothermal resources, remain in need of further study. In this work, the targeted area is surrounded by Sinian–Cambrian carbonate gas fields. An analysis of the deep geothermal prospects was conducted using exploration and development data from the Gaoshiti–Moxi gas fields within the Longwangmiao and Dengying Formations. The results indicate that the Rongchang–Dazu area has relatively high heat flow values and geothermal gradients within the Sichuan Basin, correlating with fault structure and seismic activity. Gas test data confirm that the Longwangmiao Formation in the study area reaches depths of 4000 to 4500 metres and exhibits anomalous pressures and temperatures exceeding 140 °C. Meanwhile, the Dengying Formation of the Sinian system lies at depths of 5000 to 5500 metres, with normal pressure, minimal water production, and temperatures exceeding 150 °C, characterising it as a dry-hot rock resource. Adjacent to western Chongqing, the Gaoshiti area within the Longwangmiao Formation, with an estimated flow rate of 100 kg/s, shows that the dynamic investment payback period is significantly shorter than the estimated 30-year life of a geothermal power plant, indicating strong economic viability. Deep geothermal resource development aids in conserving gas resources and enhancing the energy mix in western Chongqing. Future research should prioritise understanding the links between basement faults, seismic activity, and heat flow dynamics.

Suggested Citation

  • Xiaochuan Wu & Wei Wang & Lin Zhang & Jinxi Wang & Yuelei Zhang & Ye Zhang, 2024. "Deep Geothermal Resources with Respect to Power Generation Potential of the Sinian–Cambrian Formation in Western Chongqing City, Eastern Sichuan Basin, China," Energies, MDPI, vol. 17(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4045-:d:1456652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4045/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4045/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Peng & Liu, Jun & Elsworth, Derek, 2023. "Numerical study on a multifracture enhanced geothermal system considering matrix permeability enhancement induced by thermal unloading," Renewable Energy, Elsevier, vol. 203(C), pages 33-44.
    2. Jello, Josiane & Baser, Tugce, 2023. "Utilization of existing hydrocarbon wells for geothermal system development: A review," Applied Energy, Elsevier, vol. 348(C).
    3. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    4. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    5. Davis, Adelina P. & Michaelides, Efstathios E., 2009. "Geothermal power production from abandoned oil wells," Energy, Elsevier, vol. 34(7), pages 866-872.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Kun & Nian, Yong-Le & Cheng, Wen-Long, 2018. "Analysis and optimization of underground thermal energy storage using depleted oil wells," Energy, Elsevier, vol. 163(C), pages 1006-1016.
    2. Zuo, Yinhui & Sun, Yigao & Zhang, Luquan & Zhang, Chao & Wang, Yingchun & Jiang, Guangzheng & Wang, Xiaoguang & Zhang, Tao & Cui, Longqing, 2024. "Geothermal resource evaluation in the Sichuan Basin and suggestions for the development and utilization of abandoned oil and gas wells," Renewable Energy, Elsevier, vol. 225(C).
    3. Martina Tuschl & Tomislav Kurevija, 2023. "Revitalization Modelling of a Mature Oil Field with Bottom-Type Aquifer into Geothermal Resource—Reservoir Engineering and Techno-Economic Challenges," Energies, MDPI, vol. 16(18), pages 1-27, September.
    4. Yuhao Zhu & Kewen Li & Changwei Liu & Mahlalela Bhekumuzi Mgijimi, 2019. "Geothermal Power Production from Abandoned Oil Reservoirs Using In Situ Combustion Technology," Energies, MDPI, vol. 12(23), pages 1-21, November.
    5. Anna Chmielowska & Anna Sowiżdżał & Barbara Tomaszewska, 2021. "Prospects of Using Hydrocarbon Deposits from the Autochthonous Miocene Formation (Eastern Carpathian Foredeep, Poland) for Geothermal Purposes," Energies, MDPI, vol. 14(11), pages 1-28, May.
    6. Wang, Yi & Zhang, Liang & Cui, Guodong & Kang, Jun & Ren, Shaoran, 2019. "Geothermal development and power generation by circulating water and isobutane via a closed-loop horizontal well from hot dry rocks," Renewable Energy, Elsevier, vol. 136(C), pages 909-922.
    7. Xu, Tianfu & Liang, Xu & Xia, Yi & Jiang, Zhenjiao & Gherardi, Fabrizio, 2022. "Performance evaluation of the Habanero enhanced geothermal system, Australia: Optimization based on tracer and induced micro-seismicity data," Renewable Energy, Elsevier, vol. 181(C), pages 1197-1208.
    8. Bu, Xianbiao & Ran, Yunmin & Zhang, Dongdong, 2019. "Experimental and simulation studies of geothermal single well for building heating," Renewable Energy, Elsevier, vol. 143(C), pages 1902-1909.
    9. Kurnia, Jundika C. & Putra, Zulfan A. & Muraza, Oki & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2021. "Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia," Renewable Energy, Elsevier, vol. 175(C), pages 868-879.
    10. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    11. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    12. Aliyu, Musa D. & Archer, Rosalind A., 2021. "A thermo-hydro-mechanical model of a hot dry rock geothermal reservoir," Renewable Energy, Elsevier, vol. 176(C), pages 475-493.
    13. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    14. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    15. Molina-Rodea, R. & Saucedo-Velázquez, J. & Gómez-Franco, W.R. & Wong-Loya, J.A., 2024. "Operational proposal of “U” type earth heat exchanger harnessing a non-producing well for energy supply to an absorption cooling system. Approach with “La Primavera” geothermal field data," Renewable Energy, Elsevier, vol. 227(C).
    16. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    17. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    18. Zeng, Yu-Chao & Zhan, Jie-Min & Wu, Neng-You & Luo, Ying-Ying & Cai, Wen-Hao, 2016. "Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field," Energy, Elsevier, vol. 114(C), pages 24-39.
    19. Al Saedi, A.Q. & Sharma, P. & Kabir, C.S., 2021. "A novel cyclical wellbore-fluid circulation strategy for extracting geothermal energy," Energy, Elsevier, vol. 235(C).
    20. Sindu Daniarta & Magdalena Nemś & Piotr Kolasiński & Michał Pomorski, 2022. "Sizing the Thermal Energy Storage Device Utilizing Phase Change Material (PCM) for Low-Temperature Organic Rankine Cycle Systems Employing Selected Hydrocarbons," Energies, MDPI, vol. 15(3), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4045-:d:1456652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.