IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124016306.html
   My bibliography  Save this article

A numerical study on the sustainability and efficiency of deep coaxial borehole heat exchanger systems in the cold region of northeast China

Author

Listed:
  • Ma, Yongfa
  • Yang, Fengtian
  • Zhu, Ruijie
  • Zhou, Xuejun
  • Liu, Guang
  • Yuan, Lijuan
  • Wang, Xu
  • Dong, Junling
  • Lü, Honglin
  • Li, Chang
  • Zhan, Tao
  • Su, Bin
  • Xu, Siqi

Abstract

Numerical simulations utilizing OpenGeoSys have been conducted on a deep coaxial borehole heat exchanger situated in the Songliao Basin. The findings reveal that the outlet temperature exhibits a downward trend as circulation flow increases, while it rises with an increase in inlet temperature. Additionally, the heat transfer power escalates with higher flow rates but diminishes as inlet temperature rises. Notably, the long-term operation results in a reduction of outlet temperature and heat transfer power. After 30 years, the decline of them is approximately 0.3 °C and 8 kW under current situation. Furthermore, long-term operation induces a decrease in formation temperature, predominantly around the vicinity of well, where the maximum temperature decline is nearly 30 °C. The reduction in formation temperature is directly proportional to the increase in flow rate and inversely proportional to inlet temperature. Within the depth range of well, the maximum influence radius expands in correlation with both the depth and duration of mining, while remaining relatively stable with variations in flow rate and inlet temperature. Following three decades of extraction, the influence radius is approximately 95m. The results provide vital scientific insights for the retrofitting of abandoned wells in Northeast China into geothermal heat exchange wells for building heating purposes.

Suggested Citation

  • Ma, Yongfa & Yang, Fengtian & Zhu, Ruijie & Zhou, Xuejun & Liu, Guang & Yuan, Lijuan & Wang, Xu & Dong, Junling & Lü, Honglin & Li, Chang & Zhan, Tao & Su, Bin & Xu, Siqi, 2024. "A numerical study on the sustainability and efficiency of deep coaxial borehole heat exchanger systems in the cold region of northeast China," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016306
    DOI: 10.1016/j.renene.2024.121562
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124016306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121562?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.