IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003902.html
   My bibliography  Save this article

Numerical study on hydrodynamic characteristics of deep sea microfluidic eel energy capture device

Author

Listed:
  • Zhou, Yahui
  • Kong, Fankai
  • Liu, Hengxu
  • Jin, Yeqing
  • Chen, Hailong
  • Sun, Chongfei

Abstract

Ocean current energy is a stable, reliable, and highly predictable renewable energy source. The effective development of ocean current energy conversion technology is beneficial in addressing the issue of power shortage. However, the majority of current velocities worldwide are below 1.5 m/s, limiting the feasibility of using conventional current energy capture devices. This paper presents a vortex induced vibration based deep sea microfluidic eel energy capture device (VIV-EEL) designed to efficiently harness energy in low-speed current environments. The system employs Computational Fluid Dynamics (CFD) to develop a series of computational models that couple underwater multibody fluid-solid interactions. These models are subsequently validated through experiments. The study analyzed the flow field of VIV-EEL under different working conditions and discussed the impact of several dimensional parameters of the elastically supported cylinders, structural parameters of raft plates, and flow velocity on the hydrodynamic performance. The results demonstrate that the energy capture efficiency of VIV-EEL is enhanced by the vorticity vibration effect. It is evident that there exists an optimal radius size for the elastic support column to achieve the most favorable resonance effect in the flow field of VIV-EEL. The energy capture characteristics of the raft plate show a linear relationship with its structural parameters, enabling quantitative design according to the requirements of the power take-off system (PTO). Moreover, VIV-EEL exhibits a lower start-up flow velocity compared to traditional current energy capture devices, enabling it to initiate and capture energy at a flow rate of 0.3 m/s. This innovative solution offers technical support for efficient low-speed current energy capture.

Suggested Citation

  • Zhou, Yahui & Kong, Fankai & Liu, Hengxu & Jin, Yeqing & Chen, Hailong & Sun, Chongfei, 2024. "Numerical study on hydrodynamic characteristics of deep sea microfluidic eel energy capture device," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003902
    DOI: 10.1016/j.renene.2024.120325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Xiuxing & Zhao, Xiaowei & Zhang, Wencan, 2018. "A novel hydro-kite like energy converter for harnessing both ocean wave and current energy," Energy, Elsevier, vol. 158(C), pages 1204-1212.
    2. Park, Hongrae & Mentzelopoulos, Andreas P. & Bernitsas, Michael M., 2023. "Hydrokinetic energy harvesting from slow currents using flow-induced oscillations," Renewable Energy, Elsevier, vol. 214(C), pages 242-254.
    3. Zastempowski, Maciej, 2023. "Analysis and modeling of innovation factors to replace fossil fuels with renewable energy sources - Evidence from European Union enterprises," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yahui & Liu, Hengxu & Kong, Fankai & Wang, Xuerui & Jin, Yeqing & Sun, Chongfei & Chen, Hailong, 2024. "Research on the design and optimal control of the power take-off (PTO) system for underwater eel-type power generators," Applied Energy, Elsevier, vol. 372(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yahui & Liu, Hengxu & Kong, Fankai & Wang, Xuerui & Jin, Yeqing & Sun, Chongfei & Chen, Hailong, 2024. "Research on the design and optimal control of the power take-off (PTO) system for underwater eel-type power generators," Applied Energy, Elsevier, vol. 372(C).
    2. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    3. Sun, Hongjun & Yang, Zhen & Li, Jinxia & Ding, Hongbing & Lv, Pengfei, 2024. "Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS," Energy, Elsevier, vol. 298(C).
    4. Xu, Deyi & Abbas, Shah & Rafique, Kalsoom & Ali, Najabat, 2023. "The race to net-zero emissions: Can green technological innovation and environmental regulation be the potential pathway to net-zero emissions?," Technology in Society, Elsevier, vol. 75(C).
    5. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    6. Rashki, M.R. & Hejazi, K. & Tamimi, V. & Zeinoddini, M. & Bagherpour, P. & Aalami Harandi, M.M., 2023. "Electromagnetic energy harvesting from 2DOF-VIV of circular oscillators: Impacts of soft marine fouling," Energy, Elsevier, vol. 282(C).
    7. Panahi, Homa & Sabouhi, Fatemeh & Bozorgi-Amiri, Ali & Ghaderi, S.F., 2024. "A data-driven optimization model for renewable electricity supply chain design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    8. Oana-Daniela Lupoae & Riana Iren Radu & Alexandru Capatina & Violeta Maria Isai & Nicoleta Bărbuță-Mișu, 2023. "Exploring Precursors of Renewable Energy Portfolio Diversification Using TPB," Energies, MDPI, vol. 16(18), pages 1-19, September.
    9. Gong, Ying & Shan, Xiaobiao & Luo, Xiaowei & Pan, Jia & Xie, Tao & Yang, Zhengbao, 2019. "Direction-adaptive energy harvesting with a guide wing under flow-induced oscillations," Energy, Elsevier, vol. 187(C).
    10. Chunhong Liu & Shisong Jiang & Hanfei Zhang & Ziyi Lu & Umberto Desideri, 2024. "China and Italy’s Energy Development Trajectories: Current Landscapes and Future Cooperation Potential," Energies, MDPI, vol. 17(4), pages 1-18, February.
    11. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    12. Chenjun Zhang & Hanqi Li & Xi Zhang & Man Shen & Xu Jin, 2024. "The Performance Evaluation of a Hybrid System Combining an Alkaline Fuel Cell with an Inhomogeneous Thermoelectric Generator," Energies, MDPI, vol. 17(9), pages 1-13, April.
    13. Hai, Tao & Chaturvedi, Rishabh & Marjan, Riyam K. & Almujibah, Hamad & Van Thuong, Ta & Soliman, Naglaa F. & El-Shafai, Walid, 2024. "Tri-objective optimization of electricity, fresh water, and hydrogen production in a biomass-driven trigeneration plant: Thermoeconomic and environmental evaluation," Energy, Elsevier, vol. 294(C).
    14. Elie Al Shami & Ran Zhang & Xu Wang, 2018. "Point Absorber Wave Energy Harvesters: A Review of Recent Developments," Energies, MDPI, vol. 12(1), pages 1-36, December.
    15. Liguo Fan & Guoqiang Liu & Xianjin Song & Ce Xiang & Jiacheng Wei & Hui Xia, 2024. "Simulation and Experiments on Optimization of Vortex-Induced Vibration Power Generation System Based on Side-by-Side Double Blunt Bodies," Energies, MDPI, vol. 17(21), pages 1-23, October.
    16. Xue, Gang & Liu, Yanjun & Si, Weiwei & Ji, Chen & Guo, Fengxiang & Li, Zhitong, 2020. "Energy recovery and conservation utilizing seawater pressure in the working process of Deep-Argo profiling float," Energy, Elsevier, vol. 195(C).
    17. Paweł Ziemba & Abdullah Zair, 2023. "Temporal Analysis of Energy Transformation in EU Countries," Energies, MDPI, vol. 16(23), pages 1-21, November.
    18. Minye Rao & László Vasa & Yudan Xu & Pinghua Chen, 2023. "Spatial and Heterogeneity Analysis of Environmental Taxes’ Impact on China’s Green Economy Development: A Sustainable Development Perspective," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    19. Liu, Yang & Sun, Yongjun & Gao, Dian-ce & Tan, Jiaqi & Chen, Yuxin, 2024. "Stacked ensemble learning approach for PCM-based double-pipe latent heat thermal energy storage prediction towards flexible building energy," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.