Energy recovery and conservation utilizing seawater pressure in the working process of Deep-Argo profiling float
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.116845
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yin, Xiuxing & Zhao, Xiaowei & Zhang, Wencan, 2018. "A novel hydro-kite like energy converter for harnessing both ocean wave and current energy," Energy, Elsevier, vol. 158(C), pages 1204-1212.
- Ma, Zhesong & Wang, Yanhui & Wang, Shuxin & Yang, Yanan, 2016. "Ocean thermal energy harvesting with phase change material for underwater glider," Applied Energy, Elsevier, vol. 178(C), pages 557-566.
- Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
- Mingcong Liu & Shaobo Yang & Hongyu Li & Jiayi Xu & Xingfei Li, 2019. "Energy Consumption Analysis and Optimization of the Deep-Sea Self-Sustaining Profile Buoy," Energies, MDPI, vol. 12(12), pages 1-26, June.
- Falcão Carneiro, J. & Gomes de Almeida, F., 2016. "Model of a thermal driven volumetric pump for energy harvesting in an underwater glider," Energy, Elsevier, vol. 112(C), pages 28-42.
- Henriques, J.C.C. & Portillo, J.C.C. & Gato, L.M.C. & Gomes, R.P.F. & Ferreira, D.N. & Falcão, A.F.O., 2016. "Design of oscillating-water-column wave energy converters with an application to self-powered sensor buoys," Energy, Elsevier, vol. 112(C), pages 852-867.
- Zhu, Hongjun & Gao, Yue, 2018. "Hydrokinetic energy harvesting from flow-induced vibration of a circular cylinder with two symmetrical fin-shaped strips," Energy, Elsevier, vol. 165(PB), pages 1259-1281.
- Shuang Wu & Yanjun Liu & Qi An, 2018. "Hydrodynamic Analysis of a Marine Current Energy Converter for Profiling Floats," Energies, MDPI, vol. 11(9), pages 1-14, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Arias, Francisco J., 2023. "The thermodynamic limit of extractable kinetic energy buoyancy engine," Applied Energy, Elsevier, vol. 350(C).
- Wang, Guohui & Yang, Yanan & Wang, Shuxin, 2020. "Ocean thermal energy application technologies for unmanned underwater vehicles: A comprehensive review," Applied Energy, Elsevier, vol. 278(C).
- Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
- Chen, Bingzhe & Yang, Canjun & Yao, Zesheng & Xia, Qingchao & Chen, Yanhu, 2024. "Research on coupling enhanced heat transfer with energy storage in ocean thermal engine systems," Applied Energy, Elsevier, vol. 360(C).
- Chen, Xianzhi & Lu, Yunfei & Zhou, Songlin & Chen, Weixing, 2024. "Design, modeling and performance analysis of a deformable double-float wave energy converter for AUVs," Energy, Elsevier, vol. 292(C).
- Song, Yang & Wang, Yanhui & Yang, Shaoqiong & Wang, Shuxin & Yang, Ming, 2020. "Sensitivity analysis and parameter optimization of energy consumption for underwater gliders," Energy, Elsevier, vol. 191(C).
- Ouro-Koura, Habilou & Jung, Hyunjun & Li, Jinglun & Borca-Tasciuc, Diana-Andra & Copping, Andrea E. & Deng, Zhiqun Daniel, 2024. "Predictive model using artificial neural network to design phase change material-based ocean thermal energy harvesting systems for powering uncrewed underwater vehicles," Energy, Elsevier, vol. 301(C).
- Li, Hui & Wang, LiGuo, 2023. "Numerical study on self-power supply of large marine monitoring buoys: Wave-excited vibration energy harvesting and harvester optimization," Energy, Elsevier, vol. 285(C).
- Jahangir, Mohammad Hossein & Hosseini, Seyed Sina & Mehrpooya, Mehdi, 2018. "A detailed theoretical modeling and parametric investigation of potential power in heaving buoys," Energy, Elsevier, vol. 154(C), pages 201-209.
- Chen, Weixing & Zhou, Boen & Huang, Hao & Lu, Yunfei & Li, Shaoxun & Gao, Feng, 2022. "Design, modeling and performance analysis of a deployable WEC for ocean robots," Applied Energy, Elsevier, vol. 327(C).
- Rashid Naseer & Huliang Dai & Abdessattar Abdelkefi & Lin Wang, 2019. "Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics," Energies, MDPI, vol. 13(1), pages 1-24, December.
- Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
- Gong, Ying & Shan, Xiaobiao & Luo, Xiaowei & Pan, Jia & Xie, Tao & Yang, Zhengbao, 2019. "Direction-adaptive energy harvesting with a guide wing under flow-induced oscillations," Energy, Elsevier, vol. 187(C).
- Chen, Weixing & Lu, Yunfei & Li, Shaoxun & Gao, Feng, 2023. "A bio-inspired foldable-wing wave energy converter for ocean robots," Applied Energy, Elsevier, vol. 334(C).
- Giannini, Gianmaria & Rosa-Santos, Paulo & Ramos, Victor & Taveira-Pinto, Francisco, 2022. "Wave energy converters design combining hydrodynamic performance and structural assessment," Energy, Elsevier, vol. 249(C).
- Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
- Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
- Tian, Yuanyuan & Liu, Anbang & Wang, Junli & Zhou, Yajie & Bao, Chengpeng & Xie, Huaqing & Wu, Zihua & Wang, Yuanyuan, 2021. "Optimized output electricity of thermoelectric generators by matching phase change material and thermoelectric material for intermittent heat sources," Energy, Elsevier, vol. 233(C).
- Correia da Fonseca, F.X. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2019. "Oscillating flow rig for air turbine testing," Renewable Energy, Elsevier, vol. 142(C), pages 373-382.
- Hsien Hua Lee & Cheng-Han Chen, 2020. "Parametric Study for an Oscillating Water Column Wave Energy Conversion System Installed on a Breakwater," Energies, MDPI, vol. 13(8), pages 1-22, April.
More about this item
Keywords
Energy recovery; Energy conservation; Seawater pressure; Argo profiling float; Buoyancy driving system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:195:y:2020:i:c:s036054421932540x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.