IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5291-d1505893.html
   My bibliography  Save this article

Simulation and Experiments on Optimization of Vortex-Induced Vibration Power Generation System Based on Side-by-Side Double Blunt Bodies

Author

Listed:
  • Liguo Fan

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    School of Electric Power and Architecture, Shanxi University, Taiyuan 030006, China
    These authors contributed equally to this work.)

  • Guoqiang Liu

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xianjin Song

    (School of Electric Power and Architecture, Shanxi University, Taiyuan 030006, China)

  • Ce Xiang

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China)

  • Jiacheng Wei

    (School of Electric Power and Architecture, Shanxi University, Taiyuan 030006, China)

  • Hui Xia

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

Abstract

In order to improve the utilization efficiency of converting low-flow current energy into electric energy for Reynolds number 10,000 ≤ Re ≤ 40,000, this paper proposes a vortex-induced vibration power generation system based on a side-by-side double blunt body. In this system, the side-by-side double blunt body structure is used in the current energy capture part to enhance the collection of low-flow current energy; the permanent magnet linear motor is used in the electric energy conversion part to improve the efficiency of electric energy conversion; and a laboratory device is constructed for testing. The effects of the blunt body structure parameters and the center spacing ratio on the energy harvesting performance of the system are qualitatively explained by constructing a simulation model. Compared with the single blunt body energy capture structure, the side-by-side double blunt body structure increases the vibration amplitude by 1.04 times and the lift by 1.14 times at the center spacing S/D = 2.4. Meanwhile, energy harvesting can be realized at a lower flow velocity, increasing the vortex-induced vibration’s energy capture range. Finally, the power generation system was experimentally verified in the laboratory, and the results showed that the vibration amplitude of the double blunt body structure was increased by 1.12 times compared to the single blunt body. The maximum output power of the generator is 10.55 W when the water velocity is 0.7 m/s. The energy conversion efficiency of the power generation system can reach a maximum of 52.93%, which is 12.33% higher than that of a single blunt body structure, which proves that the system has a higher power conversion efficiency than that of a conventional single conversion system.

Suggested Citation

  • Liguo Fan & Guoqiang Liu & Xianjin Song & Ce Xiang & Jiacheng Wei & Hui Xia, 2024. "Simulation and Experiments on Optimization of Vortex-Induced Vibration Power Generation System Based on Side-by-Side Double Blunt Bodies," Energies, MDPI, vol. 17(21), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5291-:d:1505893
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaomei Guo & Mingyu Yang & Fengqin Li & Zuchao Zhu & Baoling Cui, 2024. "Investigation on Cryogenic Cavitation Characteristics of an Inducer Considering Thermodynamic Effects," Energies, MDPI, vol. 17(15), pages 1-14, July.
    2. Park, Hongrae & Mentzelopoulos, Andreas P. & Bernitsas, Michael M., 2023. "Hydrokinetic energy harvesting from slow currents using flow-induced oscillations," Renewable Energy, Elsevier, vol. 214(C), pages 242-254.
    3. Yongqing Luo & Houxian Wu & Shuhan Huang & Hai Sun, 2024. "Energy Harnessing Performance of Oscillating Foil Submerged in the Wake of a Fixed Cylinder," Energies, MDPI, vol. 17(8), pages 1-21, April.
    4. Jijian Lian & Zhichuan Wu & Shuai Yao & Xiang Yan & Xiaoqun Wang & Zhaolin Jia & Yan Long & Nan Shao & Defeng Yang & Xinyi Li, 2022. "Experimental Investigation of Flow-Induced Motion and Energy Conversion for Two Rigidly Coupled Triangular Prisms Arranged in Tandem," Energies, MDPI, vol. 15(21), pages 1-20, November.
    5. Li, Huaijun & Bernitsas, Christopher C. & Congpuong, Nipit & Bernitsas, Michael M. & Sun, Hai, 2024. "Experimental investigation on synergistic flow-induced oscillation of three rough tandem-cylinders in hydrokinetic energy conversion," Applied Energy, Elsevier, vol. 359(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Hongjun & Yang, Zhen & Li, Jinxia & Ding, Hongbing & Lv, Pengfei, 2024. "Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS," Energy, Elsevier, vol. 298(C).
    2. Bai, Xu & Sun, Meng & Zhang, Wen & Wang, Jialu, 2024. "A novel elli-circ oscillator applied in VIVACE converter and its vibration characteristics and energy harvesting efficiency," Energy, Elsevier, vol. 296(C).
    3. Zhou, Yahui & Liu, Hengxu & Kong, Fankai & Wang, Xuerui & Jin, Yeqing & Sun, Chongfei & Chen, Hailong, 2024. "Research on the design and optimal control of the power take-off (PTO) system for underwater eel-type power generators," Applied Energy, Elsevier, vol. 372(C).
    4. Rashki, M.R. & Hejazi, K. & Tamimi, V. & Zeinoddini, M. & Bagherpour, P. & Aalami Harandi, M.M., 2023. "Electromagnetic energy harvesting from 2DOF-VIV of circular oscillators: Impacts of soft marine fouling," Energy, Elsevier, vol. 282(C).
    5. Zhou, Yahui & Kong, Fankai & Liu, Hengxu & Jin, Yeqing & Chen, Hailong & Sun, Chongfei, 2024. "Numerical study on hydrodynamic characteristics of deep sea microfluidic eel energy capture device," Renewable Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5291-:d:1505893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.