Biomass and microbial lipids production by Yarrowia lipolytica W29 from eucalyptus bark hydrolysate
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2024.120173
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Katarzyna Drzymała & Aleksandra Maria Mirończuk & Witold Pietrzak & Adam Dobrowolski, 2020. "Rye and Oat Agricultural Wastes as Substrate Candidates for Biomass Production of the Non-Conventional Yeast Yarrowia lipolytica," Sustainability, MDPI, vol. 12(18), pages 1-12, September.
- Farias, Josiane Pinheiro & Okeke, Benedict C. & Ávila, Fernanda Dias De & Demarco, Carolina Faccio & Silva, Márcio Santos & Camargo, Flávio Anastácio de Oliveira & Menezes Bento, Fátima & Pieniz, Simo, 2023. "Biotechnology process for microbial lipid synthesis from enzymatic hydrolysate of pre-treated sugarcane bagasse for potential bio-oil production," Renewable Energy, Elsevier, vol. 205(C), pages 174-184.
- Helberth Júnnior Santos Lopes & Nemailla Bonturi & Everson Alves Miranda, 2020. "Rhodotorula toruloides Single Cell Oil Production Using Eucalyptus urograndis Hemicellulose Hydrolysate as a Carbon Source," Energies, MDPI, vol. 13(4), pages 1-11, February.
- Pereira, Ana S. & Lopes, Marlene & Duarte, M. Salomé & Alves, M. Madalena & Belo, Isabel, 2023. "Integrated bioprocess of microbial lipids production in Yarrowia lipolytica using food-waste derived volatile fatty acids," Renewable Energy, Elsevier, vol. 202(C), pages 1470-1478.
- Liu, Zihe & Moradi, Hamideh & Shi, Shuobo & Darvishi, Farshad, 2021. "Yeasts as microbial cell factories for sustainable production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Miao, Zhengang & Tian, Xuemei & Liang, Wenxing & He, Yawen & Wang, Guangyuan, 2020. "Bioconversion of corncob hydrolysate into microbial lipid by an oleaginous yeast Rhodotorula taiwanensis AM2352 for biodiesel production," Renewable Energy, Elsevier, vol. 161(C), pages 91-97.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shunli Feng & Yihan Guo & Yulu Ran & Qingzhuoma Yang & Xiyue Cao & Huahao Yang & Yu Cao & Qingrui Xu & Dairong Qiao & Hui Xu & Yi Cao, 2023. "Production of Microbial Lipids by Saitozyma podzolica Zwy2-3 Using Corn Straw Hydrolysate, the Analysis of Lipid Composition, and the Prediction of Biodiesel Properties," Energies, MDPI, vol. 16(18), pages 1-22, September.
- Siwina, Siraprapha & Leesing, Ratanaporn, 2021. "Bioconversion of durian (Durio zibethinus Murr.) peel hydrolysate into biodiesel by newly isolated oleaginous yeast Rhodotorula mucilaginosa KKUSY14," Renewable Energy, Elsevier, vol. 163(C), pages 237-245.
- Qu, Chunyun & Dai, Kaiqun & Fu, Hongxin & Wang, Jufang, 2021. "Enhanced ethanol production from lignocellulosic hydrolysates by Thermoanaerobacterium aotearoense SCUT27/ΔargR1864 with improved lignocellulose-derived inhibitors tolerance," Renewable Energy, Elsevier, vol. 173(C), pages 652-661.
- Milovancevic, Milos & Zandi, Yousef & Rahimi, Abouzar & Denić, Nebojša & Vujović, Vuk & Zlatković, Dragan & Ilic, Ivana D. & Stojanović, Jelena & Gavrilović, Snežana & Khadimallah, Mohamed Amine & Iva, 2022. "Engine performance fueled with jojoba biodiesel and enzymatic saccharification on the yield of glucose of microbial lipids biodiesel," Energy, Elsevier, vol. 239(PD).
- Li Ji & Pengfei Li & Fuhou Lei & Xianliang Song & Jianxin Jiang & Kun Wang, 2020. "Coproduction of Furfural, Phenolated Lignin and Fermentable Sugars from Bamboo with One-Pot Fractionation Using Phenol-Acidic 1,4-Dioxane," Energies, MDPI, vol. 13(20), pages 1-17, October.
- Caporusso, Antonio & De Bari, Isabella & Liuzzi, Federico & Albergo, Roberto & Valerio, Vito & Viola, Egidio & Pietrafesa, Rocchina & Siesto, Gabriella & Capece, Angela, 2023. "Optimized conversion of wheat straw into single cell oils by Yarrowia lipolytica and Lipomyces tetrasporus and synthesis of advanced biofuels," Renewable Energy, Elsevier, vol. 202(C), pages 184-195.
- Farias, Josiane Pinheiro & Okeke, Benedict C. & Ávila, Fernanda Dias De & Demarco, Carolina Faccio & Silva, Márcio Santos & Camargo, Flávio Anastácio de Oliveira & Menezes Bento, Fátima & Pieniz, Simo, 2023. "Biotechnology process for microbial lipid synthesis from enzymatic hydrolysate of pre-treated sugarcane bagasse for potential bio-oil production," Renewable Energy, Elsevier, vol. 205(C), pages 174-184.
- Leesing, Ratanaporn & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Innovative approach for co-production of single cell oil (SCO), novel carbon-based solid acid catalyst and SCO-based biodiesel from fallen Dipterocarpus alatus leaves," Renewable Energy, Elsevier, vol. 185(C), pages 47-60.
- Wang, Xuemin & Wang, Yanan & He, Qiaoning & Liu, Yantao & Zhao, Man & Liu, Yi & Zhou, Wenting & Gong, Zhiwei, 2022. "Highly efficient fed-batch modes for enzymatic hydrolysis and microbial lipogenesis from alkaline organosolv pretreated corn stover for biodiesel production," Renewable Energy, Elsevier, vol. 197(C), pages 1133-1143.
- Erminta Tsouko & Eirini Tolia & Dimitris Sarris, 2023. "Microbial Melanin: Renewable Feedstock and Emerging Applications in Food-Related Systems," Sustainability, MDPI, vol. 15(9), pages 1-20, May.
- Karim, Ahasanul & Islam, M. Amirul & Khalid, Zaied Bin & Yousuf, Abu & Khan, Md. Maksudur Rahman & Mohammad Faizal, Che Ku, 2021. "Microbial lipid accumulation through bioremediation of palm oil mill effluent using a yeast-bacteria co-culture," Renewable Energy, Elsevier, vol. 176(C), pages 106-114.
- Chuengcharoenphanich, Nuttha & Watsuntorn, Wannapawn & Qi, Wei & Wang, Zhongming & Hu, Yunzi & Chulalaksananukul, Warawut, 2023. "The potential of biodiesel production from grasses in Thailand through consolidated bioprocessing using a cellulolytic oleaginous yeast, Cyberlindnera rhodanensis CU-CV7," Energy, Elsevier, vol. 263(PB).
More about this item
Keywords
Eucalyptus bark hydrolysate; Microbial lipids; Volumetric oxygen transfer coefficient; Yarrowia lipolytica;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002386. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.