IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i1p287-d1559225.html
   My bibliography  Save this article

Review of Lignocellulosic Biomass Pretreatment Using Physical, Thermal and Chemical Methods for Higher Yields in Bioethanol Production

Author

Listed:
  • Adrian Woźniak

    (Rendben Ltd., Wiczlińska 117M, 81-578 Gdynia, Poland)

  • Ksawery Kuligowski

    (Rendben Ltd., Wiczlińska 117M, 81-578 Gdynia, Poland
    The Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland)

  • Lesław Świerczek

    (The Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland)

  • Adam Cenian

    (The Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland)

Abstract

The increasing demand for renewable energy sources has led to significant interest in second-generation biofuels derived from lignocellulosic biomass and waste materials. This review underscores the pivotal role of lignocellulosic biomass valorization in meeting global energy needs, mitigating greenhouse gas emissions, and fostering a circular bioeconomy. Key pretreatment methods—including steam explosion, pressure treatment, and chemical pretreatment—are analyzed for their ability to enhance the accessibility of cellulose and hemicellulose in enzymatic saccharification. Advances in cellulolytic enzyme development and fermentation strategies, such as the use of genetically engineered microorganisms capable of fermenting both hexoses and pentoses, are discussed in detail. Furthermore, the potential of biorefinery systems is explored, highlighting their capacity to integrate biomass valorization into biofuel production alongside high-value bioproducts. Case studies and recent trends in bioethanol and biogas production are examined, providing insights into the current state of research and its industrial applications. While lignocellulosic biofuels hold considerable promise for sustainable development and emissions reduction, challenges related to cost optimization, process scalability, and technological barriers must be addressed to enable large-scale implementation. This review serves as a comprehensive foundation for bridging the gap between laboratory research and industrial application, emphasizing the need for continued innovation and interdisciplinary collaboration in biofuel technologies.

Suggested Citation

  • Adrian Woźniak & Ksawery Kuligowski & Lesław Świerczek & Adam Cenian, 2025. "Review of Lignocellulosic Biomass Pretreatment Using Physical, Thermal and Chemical Methods for Higher Yields in Bioethanol Production," Sustainability, MDPI, vol. 17(1), pages 1-33, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:1:p:287-:d:1559225
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/1/287/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/1/287/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Poy, Helena & da Costa Lopes, André M. & Lladosa, Estela & Gabaldón, Carmen & Loras, Sonia & Silvestre, Armando J.D., 2023. "Enhanced biomass processing towards acetone-butanol-ethanol fermentation using a ternary deep eutectic solvent," Renewable Energy, Elsevier, vol. 219(P2).
    2. Louw, Jeanne & Dogbe, Eunice S. & Yang, Bin & Görgens, Johann F., 2023. "Prioritisation of biomass-derived products for biorefineries based on economic feasibility: A review on the comparability of techno-economic assessment results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Kelbert, Maikon & Machado, Thiago O. & Araújo, Pedro H.H. & Sayer, Claudia & de Oliveira, Débora & Maziero, Priscila & Simons, Keith E. & Carciofi, Bruno A.M., 2024. "Perspectives on biotechnological production of butyric acid from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    4. Kłosowski, Grzegorz & Mikulski, Dawid, 2023. "Changes in various lignocellulose biomasses structure after microwave-assisted hydrotropic pretreatment," Renewable Energy, Elsevier, vol. 219(P1).
    5. Regis, Francesco & Monteverde, Alessandro Hugo Antonio & Fino, Debora, 2023. "A techno-economic assessment of bioethanol production from switchgrass through biomass gasification and syngas fermentation," Energy, Elsevier, vol. 274(C).
    6. Dias, Bruna & Lopes, Marlene & Fernandes, Helena & Marques, Susana & Gírio, Francisco & Belo, Isabel, 2024. "Biomass and microbial lipids production by Yarrowia lipolytica W29 from eucalyptus bark hydrolysate," Renewable Energy, Elsevier, vol. 224(C).
    7. Naidoo, Joab C. & Moodley, Preshanthan & Sanusi, Isaac A. & Sewsynker-Sukai, Y. & Meyer, Edson L. & Gueguim Kana, Evariste, 2024. "Microwave-assisted sequential green liquor-inorganic salt pretreatment for enhanced sugar recovery from sorghum leaves towards bioethanol and biohydrogen production," Renewable Energy, Elsevier, vol. 225(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hilal Unyay & Nuriye Altınay Perendeci & Piotr Piersa & Szymon Szufa & Agata Skwarczynska-Wojsa, 2024. "Harnessing Switchgrass for Sustainable Energy: Bioethanol Production Processes and Pretreatment Technologies," Energies, MDPI, vol. 17(19), pages 1-13, September.
    2. Jain, Sanyam & Kumar, Shushil, 2024. "A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives," Energy, Elsevier, vol. 296(C).
    3. Cai, Chenggu & Wang, Zhanbiao & Ma, Lei & Xu, Zhaoxian & Yu, Jianming & Li, Fuguang, 2024. "Cotton stalk valorization towards bio-based materials, chemicals, and biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:1:p:287-:d:1559225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.