Biotechnology process for microbial lipid synthesis from enzymatic hydrolysate of pre-treated sugarcane bagasse for potential bio-oil production
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2023.01.063
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, Wei-Hsin & Tu, Yi-Jian & Sheen, Herng-Kuang, 2011. "Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating," Applied Energy, Elsevier, vol. 88(8), pages 2726-2734, August.
- Bala, Anju & Singh, Bijender, 2019. "Development of an environmental-benign process for efficient pretreatment and saccharification of Saccharum biomasses for bioethanol production," Renewable Energy, Elsevier, vol. 130(C), pages 12-24.
- Sarkar, Nibedita & Ghosh, Sumanta Kumar & Bannerjee, Satarupa & Aikat, Kaustav, 2012. "Bioethanol production from agricultural wastes: An overview," Renewable Energy, Elsevier, vol. 37(1), pages 19-27.
- Gomes, Michelle Garcia & Gurgel, Leandro Vinícius Alves & Baffi, Milla Alves & Pasquini, Daniel, 2020. "Pretreatment of sugarcane bagasse using citric acid and its use in enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 157(C), pages 332-341.
- Chen, Lu & Zhang, Yu & Liu, Guang-Lei & Chi, Zhe & Hu, Zhong & Chi, Zhen-Ming, 2020. "Cellular lipid production by the fatty acid synthase-duplicated Lipomyces kononenkoae BF1S57 strain for biodiesel making," Renewable Energy, Elsevier, vol. 151(C), pages 707-714.
- Raj, Kanak & Krishnan, Chandraraj, 2020. "Improved co-production of ethanol and xylitol from low-temperature aqueous ammonia pretreated sugarcane bagasse using two-stage high solids enzymatic hydrolysis and Candida tropicalis," Renewable Energy, Elsevier, vol. 153(C), pages 392-403.
- Miao, Zhengang & Tian, Xuemei & Liang, Wenxing & He, Yawen & Wang, Guangyuan, 2020. "Bioconversion of corncob hydrolysate into microbial lipid by an oleaginous yeast Rhodotorula taiwanensis AM2352 for biodiesel production," Renewable Energy, Elsevier, vol. 161(C), pages 91-97.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dias, Bruna & Lopes, Marlene & Fernandes, Helena & Marques, Susana & Gírio, Francisco & Belo, Isabel, 2024. "Biomass and microbial lipids production by Yarrowia lipolytica W29 from eucalyptus bark hydrolysate," Renewable Energy, Elsevier, vol. 224(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qu, Chunyun & Dai, Kaiqun & Fu, Hongxin & Wang, Jufang, 2021. "Enhanced ethanol production from lignocellulosic hydrolysates by Thermoanaerobacterium aotearoense SCUT27/ΔargR1864 with improved lignocellulose-derived inhibitors tolerance," Renewable Energy, Elsevier, vol. 173(C), pages 652-661.
- Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
- Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
- Jahnavi, Gentela & Prashanthi, Govumoni Sai & Sravanthi, Koti & Rao, Linga Venkateswar, 2017. "Status of availability of lignocellulosic feed stocks in India: Biotechnological strategies involved in the production of Bioethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 798-820.
- Bayrakci, Asiye Gül & Koçar, Günnur, 2014. "Second-generation bioethanol production from water hyacinth and duckweed in Izmir: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 306-316.
- M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
- Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
- Shunli Feng & Yihan Guo & Yulu Ran & Qingzhuoma Yang & Xiyue Cao & Huahao Yang & Yu Cao & Qingrui Xu & Dairong Qiao & Hui Xu & Yi Cao, 2023. "Production of Microbial Lipids by Saitozyma podzolica Zwy2-3 Using Corn Straw Hydrolysate, the Analysis of Lipid Composition, and the Prediction of Biodiesel Properties," Energies, MDPI, vol. 16(18), pages 1-22, September.
- Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
- Siwina, Siraprapha & Leesing, Ratanaporn, 2021. "Bioconversion of durian (Durio zibethinus Murr.) peel hydrolysate into biodiesel by newly isolated oleaginous yeast Rhodotorula mucilaginosa KKUSY14," Renewable Energy, Elsevier, vol. 163(C), pages 237-245.
- Dias, Bruna & Lopes, Marlene & Fernandes, Helena & Marques, Susana & Gírio, Francisco & Belo, Isabel, 2024. "Biomass and microbial lipids production by Yarrowia lipolytica W29 from eucalyptus bark hydrolysate," Renewable Energy, Elsevier, vol. 224(C).
- Song, Sha-Sha & Tian, Bai-Chuan & Chen, Hao & Chi, Zhe & Liu, Guang-Lei & Chi, Zhen-Ming, 2022. "Transformation of corncob-derived xylose into intracellular lipid by engineered strain of Aureobasidium melanogenum P10 for biodiesel production," Renewable Energy, Elsevier, vol. 200(C), pages 1211-1222.
- Chepeliev, Maksym & Diachuk, Oleksandr & Podolets, Roman & Trypolska, Galyna, 2021. "The role of bioenergy in Ukraine's climate mitigation policy by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
- Shirkavand, Ehsan & Baroutian, Saeid & Gapes, Daniel J. & Young, Brent R., 2016. "Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 217-234.
- Milovancevic, Milos & Zandi, Yousef & Rahimi, Abouzar & Denić, Nebojša & Vujović, Vuk & Zlatković, Dragan & Ilic, Ivana D. & Stojanović, Jelena & Gavrilović, Snežana & Khadimallah, Mohamed Amine & Iva, 2022. "Engine performance fueled with jojoba biodiesel and enzymatic saccharification on the yield of glucose of microbial lipids biodiesel," Energy, Elsevier, vol. 239(PD).
- Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
- Maria Alexandropoulou & Georgia Antonopoulou & Ioanna Ntaikou & Gerasimos Lyberatos, 2017. "Fungal Pretreatment of Willow Sawdust with Abortiporus biennis for Anaerobic Digestion: Impact of an External Nitrogen Source," Sustainability, MDPI, vol. 9(1), pages 1-14, January.
- Feng, Junfeng & Yang, Zhongzhi & Hse, Chung-yun & Su, Qiuli & Wang, Kui & Jiang, Jianchun & Xu, Junming, 2017. "In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading," Renewable Energy, Elsevier, vol. 105(C), pages 140-148.
- Song, Younho & Cho, Eun Jin & Park, Chan Song & Oh, Chi Hoon & Park, Bok-Jae & Bae, Hyeun-Jong, 2019. "A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods," Renewable Energy, Elsevier, vol. 139(C), pages 1281-1289.
More about this item
Keywords
Sugarcane bagasse; In-house enzyme production; Trichoderma SG2; Biomass-hydrolyzing enzymes; Three-stage biomass-hydrolysis process; Oleaginous yeasts;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:205:y:2023:i:c:p:174-184. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.