IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp1133-1143.html
   My bibliography  Save this article

Highly efficient fed-batch modes for enzymatic hydrolysis and microbial lipogenesis from alkaline organosolv pretreated corn stover for biodiesel production

Author

Listed:
  • Wang, Xuemin
  • Wang, Yanan
  • He, Qiaoning
  • Liu, Yantao
  • Zhao, Man
  • Liu, Yi
  • Zhou, Wenting
  • Gong, Zhiwei

Abstract

High-density culture for microbial lipid preparation from low-cost lignocellulosic feedstocks is crucial for commercial-scale biodiesel production. Herein, fed-batch saccharification of alkaline organosolv pretreatment (AOP) of corn stover at an extremely high solids content of 47% (w/v) released 299.5 g/L of lignocellulosic sugars including 18.3% of soluble oligosaccharides. Three types of liquid hydrolysates for seed culture, fermentation, and feeding during fed-batch culture were obtained from the hydrolysate slurry using a two-step washing strategy with 99.3% of sugars recovery. Cutaneotrichosporon oleaginosum showed excellent capacity for assimilating both monosaccharides and oligosaccharides for lipid production using the fed-batch culture mode. Lipid concentration, content, and yield gained 42.3 g/L, 64.6%, and 20.4 g/100 g, respectively. Turbid hydrolysate collected with high recovery of high-concentration sugars and simplified process could be directly served as feeding medium. In general, the overall hydrolysis yield and lipid yield using fed-batch mode accounted for 93.2% and 97.6% of those using batch mode, respectively, resulting in a lipid output of 102.8 g/kg raw corn stover. The fatty acid composition and the prediction of biodiesel properties of lipid samples indicated the suitability for high-quality fuel production. This study provided valuable information for designing highly efficient lignocelluloses-to-biodiesel routes.

Suggested Citation

  • Wang, Xuemin & Wang, Yanan & He, Qiaoning & Liu, Yantao & Zhao, Man & Liu, Yi & Zhou, Wenting & Gong, Zhiwei, 2022. "Highly efficient fed-batch modes for enzymatic hydrolysis and microbial lipogenesis from alkaline organosolv pretreated corn stover for biodiesel production," Renewable Energy, Elsevier, vol. 197(C), pages 1133-1143.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:1133-1143
    DOI: 10.1016/j.renene.2022.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122011685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miao, Zhengang & Tian, Xuemei & Liang, Wenxing & He, Yawen & Wang, Guangyuan, 2020. "Bioconversion of corncob hydrolysate into microbial lipid by an oleaginous yeast Rhodotorula taiwanensis AM2352 for biodiesel production," Renewable Energy, Elsevier, vol. 161(C), pages 91-97.
    2. Unrean, Pornkamol & Khajeeram, Sutamat & Champreda, Verawat, 2017. "Combining metabolic evolution and systematic fed-batch optimization for efficient single-cell oil production from sugarcane bagasse," Renewable Energy, Elsevier, vol. 111(C), pages 295-306.
    3. Siwina, Siraprapha & Leesing, Ratanaporn, 2021. "Bioconversion of durian (Durio zibethinus Murr.) peel hydrolysate into biodiesel by newly isolated oleaginous yeast Rhodotorula mucilaginosa KKUSY14," Renewable Energy, Elsevier, vol. 163(C), pages 237-245.
    4. Patel, Alok & Arora, Neha & Sartaj, Km & Pruthi, Vikas & Pruthi, Parul A., 2016. "Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 836-855.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandra Sánchez-Solís & Odette Lobato-Calleros & Rubén Moreno-Terrazas & Patricia Lappe-Oliveras & Elier Neri-Torres, 2024. "Biodiesel Production Processes with Yeast: A Sustainable Approach," Energies, MDPI, vol. 17(2), pages 1-37, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leesing, Ratanaporn & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Innovative approach for co-production of single cell oil (SCO), novel carbon-based solid acid catalyst and SCO-based biodiesel from fallen Dipterocarpus alatus leaves," Renewable Energy, Elsevier, vol. 185(C), pages 47-60.
    2. Chuengcharoenphanich, Nuttha & Watsuntorn, Wannapawn & Qi, Wei & Wang, Zhongming & Hu, Yunzi & Chulalaksananukul, Warawut, 2023. "The potential of biodiesel production from grasses in Thailand through consolidated bioprocessing using a cellulolytic oleaginous yeast, Cyberlindnera rhodanensis CU-CV7," Energy, Elsevier, vol. 263(PB).
    3. Siwina, Siraprapha & Leesing, Ratanaporn, 2021. "Bioconversion of durian (Durio zibethinus Murr.) peel hydrolysate into biodiesel by newly isolated oleaginous yeast Rhodotorula mucilaginosa KKUSY14," Renewable Energy, Elsevier, vol. 163(C), pages 237-245.
    4. Caporusso, Antonio & De Bari, Isabella & Liuzzi, Federico & Albergo, Roberto & Valerio, Vito & Viola, Egidio & Pietrafesa, Rocchina & Siesto, Gabriella & Capece, Angela, 2023. "Optimized conversion of wheat straw into single cell oils by Yarrowia lipolytica and Lipomyces tetrasporus and synthesis of advanced biofuels," Renewable Energy, Elsevier, vol. 202(C), pages 184-195.
    5. Leesing, Ratanaporn & Somdee, Theerasak & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Production of 2G and 3G biodiesel, yeast oil, and sulfonated carbon catalyst from waste coconut meal: An integrated cascade biorefinery approach," Renewable Energy, Elsevier, vol. 199(C), pages 1093-1104.
    6. Leesing, Ratanaporn & Siwina, Siraprapha & Fiala, Khanittha, 2021. "Yeast-based biodiesel production using sulfonated carbon-based solid acid catalyst by an integrated biorefinery of durian peel waste," Renewable Energy, Elsevier, vol. 171(C), pages 647-657.
    7. Qiang Li & Rasool Kamal & Qian Wang & Xue Yu & Zongbao Kent Zhao, 2020. "Lipid Production from Amino Acid Wastes by the Oleaginous Yeast Rhodosporidium toruloides," Energies, MDPI, vol. 13(7), pages 1-9, April.
    8. Dar, Rouf Ahmad & Tsui, To-Hung & Zhang, Le & Tong, Yen Wah & Sharon, Sigal & Shoseyov, Oded & Liu, Ronghou, 2024. "Fermentation of organic wastes through oleaginous microorganisms for lipid production - Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    9. Dias, Bruna & Lopes, Marlene & Fernandes, Helena & Marques, Susana & Gírio, Francisco & Belo, Isabel, 2024. "Biomass and microbial lipids production by Yarrowia lipolytica W29 from eucalyptus bark hydrolysate," Renewable Energy, Elsevier, vol. 224(C).
    10. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    11. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    12. Zhao, Man & Wang, Yanan & Zhou, Wenting & Zhou, Wei & Gong, Zhiwei, 2023. "Co-valorization of crude glycerol and low-cost substrates via oleaginous yeasts to micro-biodiesel: Status and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    13. Amit Kumar Sharma & Pankaj Kumar Sharma & Venkateswarlu Chintala & Narayan Khatri & Alok Patel, 2020. "Environment-Friendly Biodiesel/Diesel Blends for Improving the Exhaust Emission and Engine Performance to Reduce the Pollutants Emitted from Transportation Fleets," IJERPH, MDPI, vol. 17(11), pages 1-18, May.
    14. Alok Patel & Liwen Mu & Yijun Shi & Ulrika Rova & Paul Christakopoulos & Leonidas Matsakas, 2021. "Single-Cell Oils from Oleaginous Microorganisms as Green Bio-Lubricants: Studies on Their Tribological Performance," Energies, MDPI, vol. 14(20), pages 1-17, October.
    15. Belachew Cekene Tesfa & Rakesh Mishra & Aliyu M. Aliyu, 2021. "Effect of Biodiesel Blends on the Transient Performance of Compression Ignition Engines," Energies, MDPI, vol. 14(17), pages 1-21, August.
    16. Karim, Ahasanul & Islam, M. Amirul & Khalid, Zaied Bin & Yousuf, Abu & Khan, Md. Maksudur Rahman & Mohammad Faizal, Che Ku, 2021. "Microbial lipid accumulation through bioremediation of palm oil mill effluent using a yeast-bacteria co-culture," Renewable Energy, Elsevier, vol. 176(C), pages 106-114.
    17. Amany G. Ibrahim & Alaa Baazeem & Mayasar I. Al-Zaban & Mustafa A. Fawzy & Sedky H. A. Hassan & Mostafa Koutb, 2023. "Sustainable Biodiesel Production from a New Oleaginous Fungus, Aspergillus carneus Strain OQ275240: Biomass and Lipid Production Optimization Using Box–Behnken Design," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    18. Tahmasebi, Zahra & Zilouei, Hamid & Kot, Anna M., 2024. "Investigating the concomitant production of carotenoids and lipids by the yeast Rhodosporidium babjevae using sugarcane bagasse hydrolysate or corn steep liquor," Renewable Energy, Elsevier, vol. 228(C).
    19. Shunli Feng & Yihan Guo & Yulu Ran & Qingzhuoma Yang & Xiyue Cao & Huahao Yang & Yu Cao & Qingrui Xu & Dairong Qiao & Hui Xu & Yi Cao, 2023. "Production of Microbial Lipids by Saitozyma podzolica Zwy2-3 Using Corn Straw Hydrolysate, the Analysis of Lipid Composition, and the Prediction of Biodiesel Properties," Energies, MDPI, vol. 16(18), pages 1-22, September.
    20. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:1133-1143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.