IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp1156-1170.html
   My bibliography  Save this article

Analysis of a step-up dc/dc converter with capability of right-half plane zero cancellation

Author

Listed:
  • Goudarzian, Alireza
  • Khosravi, Adel
  • Raeisi, Heidar Ali

Abstract

The classical boost converter for dc/dc voltage conversion in photovoltaic or fuel cell sources inherits the disadvantage of having a slow dynamical behavior, because of the existence of the right-half plan zero (RHPZ) in its input-to-output transfer function. It is the major challengeable concern in the design of the boost converters needing to work in a continuous-conduction mode. To cancel the right-half plan zero from the transfer function of the classical converters, this paper proposes and analyses a new boost converter with a high voltage gain and minimum phase structure. This converter has a fast dynamic response compared with the conventional boost converter and therefore, it is more suitable for applications with fast dynamic response action to connect an input voltage source to an output load. In order to derive the state-space model of the suggested converter, its steady state performance is studied in details and the essential equations are obtained. The formula of the transfer function is deduced by using the averaging technique and then, the theoretical explanations and assessments are presented to show the main characteristics and superiority of the proposed converter. In addition, a practical hardware system of the designed converter has been built and tested.

Suggested Citation

  • Goudarzian, Alireza & Khosravi, Adel & Raeisi, Heidar Ali, 2020. "Analysis of a step-up dc/dc converter with capability of right-half plane zero cancellation," Renewable Energy, Elsevier, vol. 157(C), pages 1156-1170.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:1156-1170
    DOI: 10.1016/j.renene.2020.05.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120307862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Saffar, Mustafa A. & Ismail, Esam H., 2015. "A high voltage ratio and low stress DC–DC converter with reduced input current ripple for fuel cell source," Renewable Energy, Elsevier, vol. 82(C), pages 35-43.
    2. Wang, Faqiang, 2018. "A novel quadratic Boost converter with low current and voltage stress on power switch for fuel-cell system applications," Renewable Energy, Elsevier, vol. 115(C), pages 836-845.
    3. Sabzali, Ahmad J. & Ismail, Esam H. & Behbehani, Hussain M., 2015. "High voltage step-up integrated double Boost–Sepic DC–DC converter for fuel-cell and photovoltaic applications," Renewable Energy, Elsevier, vol. 82(C), pages 44-53.
    4. Verne, Santiago A. & Valla, María I., 2012. "Direct connection of WECS system to the MV grid with multilevel converters," Renewable Energy, Elsevier, vol. 41(C), pages 336-344.
    5. Wang, Hanqing & Gaillard, Arnaud & Hissel, Daniel, 2019. "A review of DC/DC converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles," Renewable Energy, Elsevier, vol. 141(C), pages 124-138.
    6. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lanagran, Enrique & Ortega, María Victoria & Ortega, Manuel & Vera, David & Jurado, Francisco, 2023. "Design of an energy management system applied to an electric power plant based on a biomass gasifier," Renewable Energy, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    2. Ramli, Mohd Zulkifli & Salam, Zainal, 2019. "Performance evaluation of dc power optimizer (DCPO) for photovoltaic (PV) system during partial shading," Renewable Energy, Elsevier, vol. 139(C), pages 1336-1354.
    3. Sun, Lejia & Jia, Jingqi & Wang, QuanLi & Zhang, Yimeng, 2024. "A novel multiphase DC/DC boost converter for interaction of solar energy and hydrogen fuel cell in hybrid electric vehicles," Renewable Energy, Elsevier, vol. 229(C).
    4. Lanagran, Enrique & Ortega, María Victoria & Ortega, Manuel & Vera, David & Jurado, Francisco, 2023. "Design of an energy management system applied to an electric power plant based on a biomass gasifier," Renewable Energy, Elsevier, vol. 216(C).
    5. Cho, Younghoon, 2017. "Dual-buck residential photovoltaic inverter with a high-accuracy repetitive current controller," Renewable Energy, Elsevier, vol. 101(C), pages 168-181.
    6. Muhannad Alaraj & Anirudh Dube & Ibrahim Alsaidan & Mohammad Rizwan & Majid Jamil, 2021. "Design and Development of a Proficient Converter for Solar Photovoltaic Based Sustainable Power Generating System," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    7. Antony Plait & Pierre Saenger & David Bouquain, 2024. "Fuel Cell System Modeling Dedicated to Performance Estimation in the Automotive Context," Energies, MDPI, vol. 17(15), pages 1-15, August.
    8. Junxing, Liu & Chagshi, Liu, 2023. "Reliable and precise determination of energy conversion in fuel cells using an integrable energy model," Renewable Energy, Elsevier, vol. 219(P2).
    9. Chih-Lung Shen & Hong-Yu Chen & Po-Chieh Chiu, 2015. "Integrated Three-Voltage-Booster DC-DC Converter to Achieve High Voltage Gain with Leakage-Energy Recycling for PV or Fuel-Cell Power Systems," Energies, MDPI, vol. 8(9), pages 1-17, September.
    10. Sajid Sarwar & Muhammad Yaqoob Javed & Mujtaba Hussain Jaffery & Muhammad Saqib Ashraf & Muhammad Talha Naveed & Muhammad Annas Hafeez, 2022. "Modular Level Power Electronics (MLPE) Based Distributed PV System for Partial Shaded Conditions," Energies, MDPI, vol. 15(13), pages 1-39, June.
    11. Hao, Xinyang & Salhi, Issam & Laghrouche, Salah & Ait Amirat, Youcef & Djerdir, Abdesslem, 2023. "Multiple inputs multi-phase interleaved boost converter for fuel cell systems applications," Renewable Energy, Elsevier, vol. 204(C), pages 521-531.
    12. Faqiang Wang & Herbert Ho-Ching Iu & Jing Li, 2018. "A Novel Step-Up Converter with an Ultrahigh Voltage Conversion Ratio," Energies, MDPI, vol. 11(10), pages 1-16, October.
    13. Abdelmalek, Samir & Dali, Ali & Bakdi, Azzeddine & Bettayeb, Maamar, 2020. "Design and experimental implementation of a new robust observer-based nonlinear controller for DC-DC buck converters," Energy, Elsevier, vol. 213(C).
    14. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    15. Khaled Osmani & Ahmad Haddad & Mohammad Alkhedher & Thierry Lemenand & Bruno Castanier & Mohamad Ramadan, 2023. "A Novel MPPT-Based Lithium-Ion Battery Solar Charger for Operation under Fluctuating Irradiance Conditions," Sustainability, MDPI, vol. 15(12), pages 1-31, June.
    16. Hyewon Yang & Young Jae Han & Jiwon Yu & Sumi Kim & Sugil Lee & Gildong Kim & Chulung Lee, 2022. "Exploring Future Promising Technologies in Hydrogen Fuel Cell Transportation," Sustainability, MDPI, vol. 14(2), pages 1-19, January.
    17. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Ioan-Sorin Sorlei & Nicu Bizon & Phatiphat Thounthong & Mihai Varlam & Elena Carcadea & Mihai Culcer & Mariana Iliescu & Mircea Raceanu, 2021. "Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies," Energies, MDPI, vol. 14(1), pages 1-29, January.
    19. Hossein Gholizadeh & Saman A. Gorji & Ebrahim Afjei & Dezso Sera, 2021. "Design and Implementation of a New Cuk-Based Step-Up DC–DC Converter," Energies, MDPI, vol. 14(21), pages 1-18, October.
    20. Vichard, L. & Ravey, A. & Venet, P. & Harel, F. & Pelissier, S. & Hissel, D., 2021. "A method to estimate battery SOH indicators based on vehicle operating data only," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:1156-1170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.