IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip1s0960148123012533.html
   My bibliography  Save this article

UiO-66-NH2@MnFe2O4 as a novel and retrievable MOF nanocatalyst for biodiesel synthesis from utilized edible oil in a microwave reactor: RSM design and CI engine studies

Author

Listed:
  • Yu, Dongmin
  • Duan, Chuanxu
  • Gu, Bing

Abstract

UiO-66-NH2@MnFe2O4 was synthesized and used as a novel nanocatalyst to generate biodiesel from utilized edible oil (UEO) in a microwave reactor. Several analyses were utilized to characterize the catalyst structure, including SEM, EDX, FTIR, Raman, CO2-TPD, TGA, VSM, BET, TEM, and XRD. Central composite design (CCD) was employed for optimizing impressive variables on biodiesel synthesis. The utmost biodiesel yield using UiO-66-NH2@MnFe2O4 under optimal conditions (e.g., nanocatalyst concentration of 2.89%, methanol/UEO proportion of 9.43:1, stirring rate of 833.89 rpm, and microwave time of 6.37 min) was 97.81%, which is a considerable yield. Moreover, the aforementioned nanocatalyst was utilized in 7 reusing cycles with high performance, so that after the 7th cycle, its biodiesel yield was more than 90%, demonstrating the high recyclability of the nanocatalyst. Furthermore, the activation energy (47.32 kJ/mol) and frequency factor (10.2 × 105) demonstrate that the UiO-66-NH2@MnFe2O4 nanocatalyst has sufficient kinetic energy to do the transesterification reaction. Besides, the reaction between alcohol and UEO was endothermic. The influence of adding biodiesel to petrodiesel in various ratios (B0–B20) on a CI diesel engine was investigated, and satisfactory outcomes were attained in terms of emissions (e.g., reducing CO and UHC concentrations) as well as engine performance.

Suggested Citation

  • Yu, Dongmin & Duan, Chuanxu & Gu, Bing, 2023. "UiO-66-NH2@MnFe2O4 as a novel and retrievable MOF nanocatalyst for biodiesel synthesis from utilized edible oil in a microwave reactor: RSM design and CI engine studies," Renewable Energy, Elsevier, vol. 219(P1).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123012533
    DOI: 10.1016/j.renene.2023.119338
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123012533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krishnamurthy, K.N. & Sridhara, S.N. & Ananda Kumar, C.S., 2020. "Optimization and kinetic study of biodiesel production from Hydnocarpus wightiana oil and dairy waste scum using snail shell CaO nano catalyst," Renewable Energy, Elsevier, vol. 146(C), pages 280-296.
    2. Gouda, Shiva Prasad & Ngaosuwan, Kanokwan & Assabumrungrat, Suttichai & Selvaraj, Manickam & Halder, Gopinath & Rokhum, Samuel Lalthazuala, 2022. "Microwave assisted biodiesel production using sulfonic acid-functionalized metal-organic frameworks UiO-66 as a heterogeneous catalyst," Renewable Energy, Elsevier, vol. 197(C), pages 161-169.
    3. Bai, Liqun & Tajikfar, Abdolreza & Tamjidi, Sajad & Foroutan, Rauf & Esmaeili, Hossein, 2021. "Synthesis of MnFe2O4@graphene oxide catalyst for biodiesel production from waste edible oil," Renewable Energy, Elsevier, vol. 170(C), pages 426-437.
    4. Maleki, Basir & Esmaeili, Hossein, 2023. "Ultrasound-assisted conversion of waste frying oil into biodiesel using Al-doped ZnO nanocatalyst: Box-Behnken design-based optimization," Renewable Energy, Elsevier, vol. 209(C), pages 10-26.
    5. Jincheng Ding & Zheng Xia & Jie Lu, 2012. "Esterification and Deacidification of a Waste Cooking Oil (TAN 68.81 mg KOH/g) for Biodiesel Production," Energies, MDPI, vol. 5(8), pages 1-9, July.
    6. Liu, Kang & Wang, Rui & Yu, Meiqing, 2018. "An efficient, recoverable solid base catalyst of magnetic bamboo charcoal: Preparation, characterization, and performance in biodiesel production," Renewable Energy, Elsevier, vol. 127(C), pages 531-538.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maleki, Basir & Ashraf Talesh, S. Siamak, 2024. "Sustainable biodiesel production from wild oak (Quercus brantii Lindl) oil as a novel and potential feedstock via highly efficient Co@CuO nanocatalyst: RSM optimization and CI engine assessment," Renewable Energy, Elsevier, vol. 224(C).
    2. Babatunde Oladipo & Tunde V Ojumu & Lekan M Latinwo & Eriola Betiku, 2020. "Pawpaw ( Carica papaya ) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study," Energies, MDPI, vol. 13(21), pages 1-25, November.
    3. Erika Carnevale & Giovanni Molari & Matteo Vittuari, 2017. "Used Cooking Oils in the Biogas Chain: A Technical and Economic Assessment," Energies, MDPI, vol. 10(2), pages 1-13, February.
    4. Liu, Ying & Yan, Hanzhao & Liu, Jia & Dong, Wanglai & Cao, Zhi & Hu, Xingbang & Zhou, Zheng, 2020. "Acidic deep eutectic solvents with long carbon chains as catalysts and reaction media for biodiesel production," Renewable Energy, Elsevier, vol. 162(C), pages 1842-1853.
    5. Das, Arpita & Li, Hui & Kataki, Rupam & Agrawal, Pratibha S. & Moyon, N.S. & Gurunathan, Baskar & Rokhum, Samuel Lalthazuala, 2023. "Terminalia arjuna bark – A highly efficient renewable heterogeneous base catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 212(C), pages 185-196.
    6. Maleki, Basir & Ashraf Talesh, S. Siamak, 2022. "Optimization of ZnO incorporation to αFe2O3 nanoparticles as an efficient catalyst for biodiesel production in a sonoreactor: Application on the CI engine," Renewable Energy, Elsevier, vol. 182(C), pages 43-59.
    7. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    8. Kazemi Shariat Panahi, Hamed & Hosseinzadeh-Bandbafha, Homa & Dehhaghi, Mona & Orooji, Yasin & Mahian, Omid & Shahbeik, Hossein & Kiehbadroudinezhad, Mohammadali & Kalam, Md Abul & Karimi-Maleh, Hassa, 2024. "Nanotechnology applications in biodiesel processing and production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    9. Kodgire, Pravin & Sharma, Anvita & Kachhwaha, Surendra Singh, 2023. "Optimization and kinetics of biodiesel production of Ricinus communis oil and used cottonseed cooking oil employing synchronised ‘ultrasound + microwave’ and heterogeneous CaO catalyst," Renewable Energy, Elsevier, vol. 212(C), pages 320-332.
    10. Xie, Wenlei & Li, Jiangbo, 2023. "Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    11. Ebadinezhad, Behzad & Haghighi, Mohammad & Zeinalzadeh, Hossein, 2022. "Carbon-templated meso-design of nanostructured CeAPSO-34 for biodiesel production from free fatty acid and waste oil," Renewable Energy, Elsevier, vol. 195(C), pages 716-733.
    12. Ming-Chien Hsiao & Peir-Horng Liao & Kuo-Chou Yang & Nguyen Vu Lan & Shuhn-Shyurng Hou, 2022. "Enhanced Biodiesel Synthesis via a Homogenizer-Assisted Two-Stage Conversion Process Using Waste Edible Oil as Feedstock," Energies, MDPI, vol. 15(23), pages 1-15, November.
    13. Wang, Fu-Ping & Kang, Le-Le & Wang, Ya-Jun & Wang, Yu-Ran & Wang, Yi-Tong & Li, Jun-Guo & Jiang, Li-Qun & Ji, Rui & Chao, Shuai & Zhang, Jian-Bao & Fang, Zhen, 2024. "Magnetic biochar catalyst from reed straw and electric furnace dust for biodiesel production and life cycle assessment," Renewable Energy, Elsevier, vol. 227(C).
    14. Ming-Chien Hsiao & Li-Wen Chang & Shuhn-Shyurng Hou, 2019. "Study of Solid Calcium Diglyceroxide for Biodiesel Production from Waste Cooking Oil Using a High Speed Homogenizer," Energies, MDPI, vol. 12(17), pages 1-11, August.
    15. Peng, Lizeng & Bahadoran, Ashkan & Sheidaei, Sina & Joolaei Ahranjani, Parham & Kamyab, Hesam & Oryani, Bahareh & Sadia Arain, Sadaf & Rezania, Shahabaldin, 2024. "Magnetic graphene oxide supported tin oxide (SnO) nanocomposite as a heterogeneous catalyst for biodiesel production from soybean oil," Renewable Energy, Elsevier, vol. 224(C).
    16. Suresh, T. & Sivarajasekar, N. & Balasubramani, K., 2021. "Enhanced ultrasonic assisted biodiesel production from meat industry waste (pig tallow) using green copper oxide nanocatalyst: Comparison of response surface and neural network modelling," Renewable Energy, Elsevier, vol. 164(C), pages 897-907.
    17. Maleki, Basir & Kalanakoppal Venkatesh, Yatish & Esmaeili, Hossein & Haddadi, Masoumeh & Mithun Prakash, Ravikumar & Balakrishna, Geetha R., 2024. "Novel Co3O4 decorated with rGO nanocatalyst to boost microwave-assisted biodiesel production and as nano-additive to enhance the performance-emission characteristics of diesel engine," Energy, Elsevier, vol. 289(C).
    18. Wang, Tianyu & Ma, Xiaoling & Bingwa, Ndzondelelo & Yu, Hao & Wang, Yunpu & Li, Guoning & Guo, Min & Xiao, Qiangqiang & Li, Shijie & Zhao, Xudong & Li, Hui, 2024. "A novel bimetallic CaFe-MOF derivative for transesterification: Catalytic performance, characterization, and stability," Energy, Elsevier, vol. 292(C).
    19. Che Zhao & Hongyuan Chen & Xiao Wu & Rui Shan, 2023. "Exploiting the Waste Biomass of Durian Shell as a Heterogeneous Catalyst for Biodiesel Production at Room Temperature," IJERPH, MDPI, vol. 20(3), pages 1-10, January.
    20. P. Sujin & P. M. Diaz & Ajith J. Kings & L. R. Monisha Miriam, 2023. "Sustainable biodiesel production from Ceiba penandra, Mahua longifolia, and Azadirachta indica using CaO-TiO2 nano catalyst," Energy & Environment, , vol. 34(3), pages 640-662, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123012533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.