IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p814-d1587526.html
   My bibliography  Save this article

From Waste to Functional Material—Carbon Aerogels from Citrus Biomass Infiltrated with Phase Change Materials for Possible Application in Solar-Thermal Energy Conversion and Storage

Author

Listed:
  • Katarzyna Suchorowiec

    (Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Martyna Bieda

    (Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Martyna Szatkowska

    (Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Małgorzata Sieradzka

    (Department of Heat Engineering & Environment Protection, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Monika Kuźnia

    (Department of Heat Engineering & Environment Protection, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Magdalena Ziąbka

    (Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Kinga Pielichowska

    (Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

Green energy conversion and storage materials have become a focal point of research in recent times, especially in energy-consuming buildings. Phase change materials (PCMs) have gained more and more attention not only for energy storage but also in composites for solar energy conversion. This research investigates a sustainable method for converting orange biomass waste (OBW) into advanced porous carbon aerogel (PCA) composites, designed for solar-thermal energy harvesting and storage in building applications. Using potato starch as a binder, the research develops a process for producing a uniform and lightweight carbon matrix that could be scalable. The best results were found for PCA obtained with 2.5% starch, where the lowest mass loss (8.2, 0.5, 11.2% pt) was observed during the leakage test. This study highlights the suitability of OBW-derived aerogels as effective matrices for PCM impregnation and shape stabilization, indicating their future potential in solar-thermal energy conversion and storage and potentially lowering energy consumption in buildings. By repurposing agricultural waste, this work contributes to sustainable material development and advances the application of renewable energy technologies.

Suggested Citation

  • Katarzyna Suchorowiec & Martyna Bieda & Martyna Szatkowska & Małgorzata Sieradzka & Monika Kuźnia & Magdalena Ziąbka & Kinga Pielichowska, 2025. "From Waste to Functional Material—Carbon Aerogels from Citrus Biomass Infiltrated with Phase Change Materials for Possible Application in Solar-Thermal Energy Conversion and Storage," Energies, MDPI, vol. 18(4), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:814-:d:1587526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/814/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/814/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kishore, Ravi Anant & Bianchi, Marcus V.A. & Booten, Chuck & Vidal, Judith & Jackson, Roderick, 2021. "Enhancing building energy performance by effectively using phase change material and dynamic insulation in walls," Applied Energy, Elsevier, vol. 283(C).
    2. Yang, Haiyue & Wang, Siyuan & Wang, Xin & Chao, Weixiang & Wang, Nan & Ding, Xiaolun & Liu, Feng & Yu, Qianqian & Yang, Tinghan & Yang, Zhaolin & Li, Jian & Wang, Chengyu & Li, Guoliang, 2020. "Wood-based composite phase change materials with self-cleaning superhydrophobic surface for thermal energy storage," Applied Energy, Elsevier, vol. 261(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karanafti, Aikaterina & Theodosiou, Theodoros & Tsikaloudaki, Katerina, 2022. "Assessment of buildings’ dynamic thermal insulation technologies-A review," Applied Energy, Elsevier, vol. 326(C).
    2. Gowthami, D. & Sharma, R.K., 2023. "Influence of Hydrophilic and Hydrophobic modification of the porous matrix on the thermal performance of form stable phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    3. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    4. Wu, Yubo & Du, Jianqiang & Liu, Guangxin & Ma, Danzhu & Jia, Fengrui & Klemeš, Jiří Jaromír & Wang, Jin, 2022. "A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating," Renewable Energy, Elsevier, vol. 185(C), pages 1034-1061.
    5. Zhang, Yuan & Sun, Xiaoqin & Medina, Mario A., 2024. "Experimental assessment of concrete masonry units integrated with insulation and phase change material: A wall-pattern study," Energy, Elsevier, vol. 289(C).
    6. Bre, Facundo & Lamberts, Roberto & Flores-Larsen, Silvana & Koenders, Eduardus A.B., 2023. "Multi-objective optimization of latent energy storage in buildings by using phase change materials with different melting temperatures," Applied Energy, Elsevier, vol. 336(C).
    7. Wei, Zhichen & Calautit, John Kaiser, 2024. "Field experiment testing of a low-cost model predictive controller (MPC) for building heating systems and analysis of phase change material (PCM) integration," Applied Energy, Elsevier, vol. 360(C).
    8. Su, Huan & Zhang, Zhe & Dai, Guoqiang & Guo, Haoyu & Li, Xiaohua & Xu, Chunwen, 2024. "Investigating the thermal performance of a pipe-encapsulated movable PCM wall and its impact on reducing indoor heat gain during summer," Renewable Energy, Elsevier, vol. 237(PC).
    9. Palmer, Ben & Arshad, Adeel & Yang, Yan & Wen, Chuang, 2023. "Energy storage performance improvement of phase change materials-based triplex-tube heat exchanger (TTHX) using liquid–solid interface-informed fin configurations," Applied Energy, Elsevier, vol. 333(C).
    10. Atinafu, Dimberu G. & Wi, Seunghwan & Yun, Beom Yeol & Kim, Sumin, 2021. "Engineering biochar with multiwalled carbon nanotube for efficient phase change material encapsulation and thermal energy storage," Energy, Elsevier, vol. 216(C).
    11. Li, Xinghui & Zhu, Ziqi & Yang, Pei & You, Zhenping & Dong, Yue & Tang, Miao & Chen, Minzhi & Zhou, Xiaoyan, 2021. "Carbonized wood loaded with carbon dots for preparation long-term shape-stabilized composite phase change materials with superior thermal energy conversion capacity," Renewable Energy, Elsevier, vol. 174(C), pages 19-30.
    12. Hou, Yujie & Chen, Hua & Liu, Xiuli, 2022. "Experimental study on the effect of partial filling of copper foam on heat storage of paraffin-based PCM," Renewable Energy, Elsevier, vol. 192(C), pages 561-571.
    13. Cui, Shuang & Kishore, Ravi Anant & Kolari, Pranvera & Zheng, Qiye & Kaur, Sumanjeet & Vidal, Judith & Jackson, Roderick, 2023. "Model-driven development of durable and scalable thermal energy storage materials for buildings," Energy, Elsevier, vol. 265(C).
    14. Zhou, Yuekuan & Zheng, Siqian, 2024. "A co-simulated material-component-system-district framework for climate-adaption and sustainability transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    15. Huang, He & Wang, Honglei & Hu, Yu-Jie & Li, Chengjiang & Wang, Xiaolin, 2022. "Optimal plan for energy conservation and CO2 emissions reduction of public buildings considering users' behavior: Case of China," Energy, Elsevier, vol. 261(PA).
    16. Nandy, Aditi & Houl, Yassine & Zhao, Weihuan & D'Souza, Nandika Anne, 2023. "Thermal heat transfer and energy modeling through incorporation of phase change materials (PCMs) into polyurethane foam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    17. Wang, Zhen & Wang, Yanlin & Yang, Laishun & Cui, Yi & Song, Lei & Yue, Guangxi, 2024. "Multi-objective optimization of heat charging performance of phase change materials in tree-shaped perforated fin heat exchangers," Energy, Elsevier, vol. 294(C).
    18. Deng, Xunhe & Li, Cong & Sun, Xiaohan & Wang, Chengyu & Liu, Baosheng & Li, Yudong & Yang, Haiyue, 2024. "Flame-retardant wood-based composite phase change materials based on PDMS/expanded graphite coating for efficient solar-to-thermal energy storage," Applied Energy, Elsevier, vol. 368(C).
    19. Liu, Changhui & Xiao, Tong & Zhao, Jiateng & Liu, Qingyi & Sun, Wenjie & Guo, Chenglong & Ali, Hafiz Muhammad & Chen, Xiao & Rao, Zhonghao & Gu, Yanlong, 2023. "Polymer engineering in phase change thermal storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Zhao, Hengxin & Wu, Yifan & Sun, Hongli & Lin, Borong & Zhong, Minlin & Jiang, Guochen & Wu, Shuangdui, 2023. "A novel building envelope combined with jumping-droplet thermal diode: From theory to practice," Renewable Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:814-:d:1587526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.