IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i4p1001-1017d17246.html
   My bibliography  Save this article

Design Specifications for the Hanstholm WEPTOS Wave Energy Converter

Author

Listed:
  • Arthur Pecher

    (Department of Civil Engineering, Aalborg University, Aalborg 9000, Denmark)

  • Jens Peter Kofoed

    (Department of Civil Engineering, Aalborg University, Aalborg 9000, Denmark)

  • Tommy Larsen

    (WEPTOS A/S, Fredericia7000, Denmark)

Abstract

The WEPTOS wave energy converter (WEC) is a novel device that combines an established and efficient wave energy absorbing mechanism with a smart structure, which can regulate the amount of incoming wave energy and reduce loads in extreme wave conditions. This adjustable A-shaped slack-moored and floating structure absorbs the energy of the waves through a multitude of rotors. The shape of the rotors is based on the renowned Salter’s Duck. On each leg, the rotors pivot around a common axle, through which the rotors transfer the absorbed power to a common power take off system. The study investigates the required capacity of the power take off (PTO) system and the structural forces on a WEPTOS WEC prototype, intended for installation at Hanstholm (Denmark), based on large scale experimental tests using a highly realistic laboratory model of the complete device. The results hereof includes the rotational speed and transmitted torque (and hereby power) to the PTO system using different PTO control strategies, the impact of fluctuations of the available mechanical power and the effect of limiting the PTO capacity on the annual energy production. Acquisition of structural forces includes mooring forces and structural bending moments in both production and extreme wave conditions, illustrating that the regulation of the angle in the A shape ensures that extreme forces on the structure can be kept in the same order of magnitude as in production conditions.

Suggested Citation

  • Arthur Pecher & Jens Peter Kofoed & Tommy Larsen, 2012. "Design Specifications for the Hanstholm WEPTOS Wave Energy Converter," Energies, MDPI, vol. 5(4), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:4:p:1001-1017:d:17246
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/4/1001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/4/1001/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    2. Xiaohui Zeng & Yang Yu & Liang Zhang & Qingquan Liu & Han Wu, 2014. "A New Energy-Absorbing Device for Motion Suppression in Deep-Sea Floating Platforms," Energies, MDPI, vol. 8(1), pages 1-22, December.
    3. Yazdi, Hossein & Ghafari, Hamid Reza & Ghassemi, Hassan & He, Guanghua & Karimirad, Madjid, 2023. "Wave power extraction by Multi-Salter's duck WECs arrayed on the floating offshore wind turbine platform," Energy, Elsevier, vol. 278(PA).
    4. Ryan G. Coe & Yi-Hsiang Yu & Jennifer Van Rij, 2017. "A Survey of WEC Reliability, Survival and Design Practices," Energies, MDPI, vol. 11(1), pages 1-19, December.
    5. Lucia Margheritini & Jens Peter Kofoed, 2019. "Weptos Wave Energy Converters to Cover the Energy Needs of a Small Island," Energies, MDPI, vol. 12(3), pages 1-17, January.
    6. Schallenberg-Rodríguez, Julieta & Del Rio-Gamero, Beatriz & Melian-Martel, Noemi & Lis Alecio, Tyrone & González Herrera, Javier, 2020. "Energy supply of a large size desalination plant using wave energy. Practical case: North of Gran Canaria," Applied Energy, Elsevier, vol. 278(C).
    7. Markel Penalba & John V. Ringwood, 2016. "A Review of Wave-to-Wire Models for Wave Energy Converters," Energies, MDPI, vol. 9(7), pages 1-45, June.
    8. Choupin, O. & Têtu, A. & Del Río-Gamero, B. & Ferri, F. & Kofoed, JP., 2022. "Premises for an annual energy production and capacity factor improvement towards a few optimised wave energy converters configurations and resources pairs," Applied Energy, Elsevier, vol. 312(C).
    9. Gianmaria Giannini & Paulo Rosa-Santos & Victor Ramos & Francisco Taveira-Pinto, 2020. "On the Development of an Offshore Version of the CECO Wave Energy Converter," Energies, MDPI, vol. 13(5), pages 1-24, February.
    10. Kong, Weihua & He, Liujin & Hao, Daning & Wu, Xiaoping & Xiao, Luo & Zhang, Zutao & Xu, Yongsheng & Azam, Ali, 2023. "A wave energy harvester based on an ultra-low frequency synergistic PTO for intelligent fisheries," Renewable Energy, Elsevier, vol. 217(C).
    11. Chen, Zihe & Zhang, Xiantao & Liu, Lei & Tian, Xinliang & Li, Xin, 2024. "Mechanical property identification and performance evaluation of a power take-off combined with a mechanical motion rectifier and a magnetic bistable device," Applied Energy, Elsevier, vol. 353(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:4:p:1001-1017:d:17246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.