IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v215y2023ics096014812300887x.html
   My bibliography  Save this article

Techno-economic feasibility of hybrid hydro-FPV systems in Sub-Saharan Africa under different market conditions

Author

Listed:
  • Olkkonen, Ville
  • Haaskjold, Kristina
  • Klyve, Øyvind Sommer
  • Skartlien, Roar

Abstract

Floating photovoltaic (FPV) systems are an emerging and increasingly competitive application of solar PV, especially in land area-constrained countries. This study focuses on the optimal dimensioning and scheduling of a grid-connected hybrid hydro-FPV system. The case study is based on a cascade hydropower system located in Sub-Saharan Africa. The techno-economic feasibility of the hybrid system is analysed under different types of revenue streams and load commitments. Moreover, the resource complementarity between solar irradiation and reservoir water inflow in different weather years is analysed. A linear programming model for optimal dimensioning/scheduling of a hybrid hydro-FPV system is proposed. The results indicate that hybridisation with FPV can under the proposed PPA and spot market structure increase the annual producer profits by 18–21% and 0–4%, respectively compared to a hydro-only system. Furthermore, it is estimated that the CAPEX of FPV should be around 42–57% lower than that of ground-mounted PV (GPV) with single-axis tracking for the hydro-FPV system to reach the same annual producer profit as the hydro-GPV system. Considering improved efficiency by cooling the FPV modules, the revenues increase by 0–3% depending on the selected weather year and market scheme.

Suggested Citation

  • Olkkonen, Ville & Haaskjold, Kristina & Klyve, Øyvind Sommer & Skartlien, Roar, 2023. "Techno-economic feasibility of hybrid hydro-FPV systems in Sub-Saharan Africa under different market conditions," Renewable Energy, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:renene:v:215:y:2023:i:c:s096014812300887x
    DOI: 10.1016/j.renene.2023.118981
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812300887X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.118981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Piancó, Felipe & Moraes, Leo & Prazeres, Igor dos & Lima, Antônio Guilherme Garcia & Bessa, João Gabriel & Micheli, Leonardo & Fernández, Eduardo & Almonacid, Florencia, 2022. "Hydroelectric operation for hybridization with a floating photovoltaic plant: A case of study," Renewable Energy, Elsevier, vol. 201(P1), pages 85-95.
    2. Li, He & Liu, Pan & Guo, Shenglian & Ming, Bo & Cheng, Lei & Yang, Zhikai, 2019. "Long-term complementary operation of a large-scale hydro-photovoltaic hybrid power plant using explicit stochastic optimization," Applied Energy, Elsevier, vol. 238(C), pages 863-875.
    3. Philipp Härtel & Magnus Korpås, 2017. "Aggregation Methods for Modelling Hydropower and Its Implications for a Highly Decarbonised Energy System in Europe," Energies, MDPI, vol. 10(11), pages 1-28, November.
    4. Maleki, Akbar & Ameri, Mehran & Keynia, Farshid, 2015. "Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system," Renewable Energy, Elsevier, vol. 80(C), pages 552-563.
    5. Chiabrando, Roberto & Fabrizio, Enrico & Garnero, Gabriele, 2009. "The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2441-2451, December.
    6. Chen, Yi-kuang & Kirkerud, Jon Gustav & Bolkesjø, Torjus Folsland, 2022. "Balancing GHG mitigation and land-use conflicts: Alternative Northern European energy system scenarios," Applied Energy, Elsevier, vol. 310(C).
    7. Lee, Nathan & Grunwald, Ursula & Rosenlieb, Evan & Mirletz, Heather & Aznar, Alexandra & Spencer, Robert & Cox, Sadie, 2020. "Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential," Renewable Energy, Elsevier, vol. 162(C), pages 1415-1427.
    8. Obahoundje, Salomon & Diedhiou, Arona & Dubus, Laurent & Adéchina Alamou, Eric & Amoussou, Ernest & Akpoti, Komlavi & Antwi Ofosu, Eric, 2022. "Modeling climate change impact on inflow and hydropower generation of Nangbeto dam in West Africa using multi-model CORDEX ensemble and ensemble machine learning," Applied Energy, Elsevier, vol. 325(C).
    9. Ramírez-Sagner, Gonzalo & Muñoz, Francisco D., 2019. "The effect of head-sensitive hydropower approximations on investments and operations in planning models for policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 38-47.
    10. Gonzalez Sanchez, Rocio & Kougias, Ioannis & Moner-Girona, Magda & Fahl, Fernando & Jäger-Waldau, Arnulf, 2021. "Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa," Renewable Energy, Elsevier, vol. 169(C), pages 687-699.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kowsar, Abu & Hassan, Mahedi & Rana, Md Tasnim & Haque, Nawshad & Faruque, Md Hasan & Ahsan, Saifuddin & Alam, Firoz, 2023. "Optimization and techno-economic assessment of 50 MW floating solar power plant on Hakaluki marsh land in Bangladesh," Renewable Energy, Elsevier, vol. 216(C).
    2. Maier, Rachel & Lütz, Luna & Risch, Stanley & Kullmann, Felix & Weinand, Jann & Stolten, Detlef, 2024. "Potential of floating, parking, and agri photovoltaics in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    3. Sika Gadzanku & Heather Mirletz & Nathan Lee & Jennifer Daw & Adam Warren, 2021. "Benefits and Critical Knowledge Gaps in Determining the Role of Floating Photovoltaics in the Energy-Water-Food Nexus," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    4. Zhang, Bo & Qiu, Rui & Liao, Qi & Liang, Yongtu & Ji, Haoran & Jing, Rui, 2022. "Design and operation optimization of city-level off-grid hydro–photovoltaic complementary system," Applied Energy, Elsevier, vol. 306(PB).
    5. Laura Essak & Aritra Ghosh, 2022. "Floating Photovoltaics: A Review," Clean Technol., MDPI, vol. 4(3), pages 1-18, August.
    6. Kakoulaki, G. & Gonzalez Sanchez, R. & Gracia Amillo, A. & Szabo, S. & De Felice, M. & Farinosi, F. & De Felice, L. & Bisselink, B. & Seliger, R. & Kougias, I. & Jaeger-Waldau, A., 2023. "Benefits of pairing floating solar photovoltaics with hydropower reservoirs in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    7. Yevang Nhiavue & Han Soo Lee & Sylvester William Chisale & Jonathan Salar Cabrera, 2022. "Prioritization of Renewable Energy for Sustainable Electricity Generation and an Assessment of Floating Photovoltaic Potential in Lao PDR," Energies, MDPI, vol. 15(21), pages 1-20, November.
    8. Moraes, Camile A. & Valadão, Giovana F. & Renato, Natalia S. & Botelho, Daniel F. & Oliveira, Augusto C. L. de & Aleman, Catariny C. & Cunha, Fernando F., 2022. "Floating photovoltaic plants as an electricity supply option in the Tocantins-Araguaia basin," Renewable Energy, Elsevier, vol. 193(C), pages 264-277.
    9. Padilha Campos Lopes, Mariana & Nogueira, Tainan & Santos, Alberto José Leandro & Castelo Branco, David & Pouran, Hamid, 2022. "Technical potential of floating photovoltaic systems on artificial water bodies in Brazil," Renewable Energy, Elsevier, vol. 181(C), pages 1023-1033.
    10. Vidović, V. & Krajačić, G. & Matak, N. & Stunjek, G. & Mimica, M., 2023. "Review of the potentials for implementation of floating solar panels on lakes and water reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    11. Vadim Manusov & Svetlana Beryozkina & Muso Nazarov & Murodbek Safaraliev & Inga Zicmane & Pavel Matrenin & Anvari Ghulomzoda, 2022. "Optimal Management of Energy Consumption in an Autonomous Power System Considering Alternative Energy Sources," Mathematics, MDPI, vol. 10(3), pages 1-17, February.
    12. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    13. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Silva, C.A., 2023. "Experimental and numerical investigation of the influence of terrain slope on the performance of single-axis trackers," Applied Energy, Elsevier, vol. 348(C).
    14. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    16. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    17. Daniel Matulić & Željko Andabaka & Sanja Radman & Goran Fruk & Josip Leto & Jakša Rošin & Mirta Rastija & Ivana Varga & Tea Tomljanović & Hrvoje Čeprnja & Marko Karoglan, 2023. "Agrivoltaics and Aquavoltaics: Potential of Solar Energy Use in Agriculture and Freshwater Aquaculture in Croatia," Agriculture, MDPI, vol. 13(7), pages 1-26, July.
    18. Jiehong Kong & Igor Iliev & Hans Ivar Skjelbred, 2024. "Including Lifetime Hydraulic Turbine Cost into Short-Term Hybrid Scheduling of Hydro and Solar," Energies, MDPI, vol. 17(21), pages 1-17, October.
    19. Shasha Chai & Fanjie Kong & Yu Liu & Mengyin Liang & Quanfeng Liu, 2024. "Photovoltaic Solar Farms Site Selection through “Policy Constraints–Construction Suitability”: A Case Study of Qilian County, Qinghai," Land, MDPI, vol. 13(9), pages 1-20, September.
    20. Cheng, Qian & Liu, Pan & Ming, Bo & Yang, Zhikai & Cheng, Lei & Liu, Zheyuan & Huang, Kangdi & Xu, Weifeng & Gong, Lanqiang, 2024. "Synchronizing short-, mid-, and long-term operations of hydro-wind-photovoltaic complementary systems," Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:215:y:2023:i:c:s096014812300887x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.