IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v193y2022icp264-277.html
   My bibliography  Save this article

Floating photovoltaic plants as an electricity supply option in the Tocantins-Araguaia basin

Author

Listed:
  • Moraes, Camile A.
  • Valadão, Giovana F.
  • Renato, Natalia S.
  • Botelho, Daniel F.
  • Oliveira, Augusto C. L. de
  • Aleman, Catariny C.
  • Cunha, Fernando F.

Abstract

Brazil has high solar potential. The yearly sum of solar irradiation is approximately 1924.07 kWh/m2, therefore, harnessing this potential is promising. The country is dependent on hydroelectric plants, however, increasingly frequent droughts have severely affected hydrogeneration. The installation of floating photovoltaic (FPV) systems in existing hydropower reservoirs, would provide additional electricity to help compensate hydropower production during dry periods and reduce evaporation losses while helping to sustainably meet Brazil's electricity demand. This study provide an analysis of FPV potential in Brazil's region, named the Tocantins-Araguaia Basin, by using water surface data from 30 hydropower reservoirs. In addition to the new electricity production, evaporation savings and its extra potential hydroelectricity were also estimated. A survey of the reduction in CO2 emissions was conducted, given that the complementary electricity to hydroelectric plants would be through solar generation, thus avoiding the activation of thermoelectric plants. The main results indicate the high FPV potential, corresponding to an electricity production that varies from 25.04 to 2555.04 TWh/year, and a range of 19.86–2024.30 million tCO2/year of avoided emissions. Regarding the potential arising from the evaporation water savings, the values vary between 16.17 and 892.95 GWh/year.

Suggested Citation

  • Moraes, Camile A. & Valadão, Giovana F. & Renato, Natalia S. & Botelho, Daniel F. & Oliveira, Augusto C. L. de & Aleman, Catariny C. & Cunha, Fernando F., 2022. "Floating photovoltaic plants as an electricity supply option in the Tocantins-Araguaia basin," Renewable Energy, Elsevier, vol. 193(C), pages 264-277.
  • Handle: RePEc:eee:renene:v:193:y:2022:i:c:p:264-277
    DOI: 10.1016/j.renene.2022.04.142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122006103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ., 2021. "Results, relevance and limitations," Chapters, in: A Guide to Islamic Asset Management, chapter 3, pages 75-76, Edward Elgar Publishing.
    2. Carstens, Danielle Denes dos Santos & Cunha, Sieglinde Kindl da, 2019. "Challenges and opportunities for the growth of solar photovoltaic energy in Brazil," Energy Policy, Elsevier, vol. 125(C), pages 396-404.
    3. Murillo Vetroni Barros & Cassiano Moro Piekarski & Antonio Carlos De Francisco, 2018. "Carbon Footprint of Electricity Generation in Brazil: An Analysis of the 2016–2026 Period," Energies, MDPI, vol. 11(6), pages 1-14, June.
    4. Sahu, Alok & Yadav, Neha & Sudhakar, K., 2016. "Floating photovoltaic power plant: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 815-824.
    5. ., 2021. "Understanding the results of collaboration," Chapters, in: Networks, SMEs, and the University, chapter 9, pages 124-139, Edward Elgar Publishing.
    6. Gerbaulet, C. & von Hirschhausen, C. & Kemfert, C. & Lorenz, C. & Oei, P.-Y., 2019. "European electricity sector decarbonization under different levels of foresight," Renewable Energy, Elsevier, vol. 141(C), pages 973-987.
    7. Ferreira, Agmar & Kunh, Sheila S. & Fagnani, Kátia C. & De Souza, Tiago A. & Tonezer, Camila & Dos Santos, Geocris Rodrigues & Coimbra-Araújo, Carlos H., 2018. "Economic overview of the use and production of photovoltaic solar energy in brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 181-191.
    8. Lee, Nathan & Grunwald, Ursula & Rosenlieb, Evan & Mirletz, Heather & Aznar, Alexandra & Spencer, Robert & Cox, Sadie, 2020. "Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential," Renewable Energy, Elsevier, vol. 162(C), pages 1415-1427.
    9. Sulaeman, Samer & Brown, Erik & Quispe-Abad, Raul & Müller, Norbert, 2021. "Floating PV system as an alternative pathway to the amazon dam underproduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Miranda, Raul F.C. & Szklo, Alexandre & Schaeffer, Roberto, 2015. "Technical-economic potential of PV systems on Brazilian rooftops," Renewable Energy, Elsevier, vol. 75(C), pages 694-713.
    11. Sun-Hee Kim & Soon-Jong Yoon & Wonchang Choi & Ki-Bong Choi, 2016. "Application of Floating Photovoltaic Energy Generation Systems in South Korea," Sustainability, MDPI, vol. 8(12), pages 1-9, December.
    12. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    13. Stiubiener, Uri & Carneiro da Silva, Thadeu & Trigoso, Federico Bernardino Morante & Benedito, Ricardo da Silva & Teixeira, Julio Carlos, 2020. "PV power generation on hydro dam’s reservoirs in Brazil: A way to improve operational flexibility," Renewable Energy, Elsevier, vol. 150(C), pages 765-776.
    14. Gonzalez Sanchez, Rocio & Kougias, Ioannis & Moner-Girona, Magda & Fahl, Fernando & Jäger-Waldau, Arnulf, 2021. "Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa," Renewable Energy, Elsevier, vol. 169(C), pages 687-699.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ateş, Ali Murat, 2022. "Unlocking the floating photovoltaic potential of Türkiye's hydroelectric power plants," Renewable Energy, Elsevier, vol. 199(C), pages 1495-1509.
    2. Benjamins, Steven & Williamson, Benjamin & Billing, Suzannah-Lynn & Yuan, Zhiming & Collu, Maurizio & Fox, Clive & Hobbs, Laura & Masden, Elizabeth A. & Cottier-Cook, Elizabeth J. & Wilson, Ben, 2024. "Potential environmental impacts of floating solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. C.J., Ramanan & Lim, King Hann & Kurnia, Jundika Candra & Roy, Sukanta & Bora, Bhaskor Jyoti & Medhi, Bhaskar Jyoti, 2024. "Towards sustainable power generation: Recent advancements in floating photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    4. Piancó, Felipe & Moraes, Leo & Prazeres, Igor dos & Lima, Antônio Guilherme Garcia & Bessa, João Gabriel & Micheli, Leonardo & Fernández, Eduardo & Almonacid, Florencia, 2022. "Hydroelectric operation for hybridization with a floating photovoltaic plant: A case of study," Renewable Energy, Elsevier, vol. 201(P1), pages 85-95.
    5. Muñoz-Cerón, Emilio & Osorio-Aravena, Juan Carlos & Rodríguez-Segura, Francisco Javier & Frolova, Marina & Ruano-Quesada, Antonio, 2023. "Floating photovoltaics systems on water irrigation ponds: Technical potential and multi-benefits analysis," Energy, Elsevier, vol. 271(C).
    6. Bai, Bo & Xiong, Siqin & Ma, Xiaoming & Liao, Xiawei, 2024. "Assessment of floating solar photovoltaic potential in China," Renewable Energy, Elsevier, vol. 220(C).
    7. Fernando Roberto dos Santos & Giovana Katie Wiecheteck & Jorim Sousa das Virgens Filho & Gabriel Alfredo Carranza & Terrence Lynn Chambers & Afef Fekih, 2022. "Effects of a Floating Photovoltaic System on the Water Evaporation Rate in the Passaúna Reservoir, Brazil," Energies, MDPI, vol. 15(17), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sika Gadzanku & Heather Mirletz & Nathan Lee & Jennifer Daw & Adam Warren, 2021. "Benefits and Critical Knowledge Gaps in Determining the Role of Floating Photovoltaics in the Energy-Water-Food Nexus," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    2. Vidović, V. & Krajačić, G. & Matak, N. & Stunjek, G. & Mimica, M., 2023. "Review of the potentials for implementation of floating solar panels on lakes and water reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    3. Kowsar, Abu & Hassan, Mahedi & Rana, Md Tasnim & Haque, Nawshad & Faruque, Md Hasan & Ahsan, Saifuddin & Alam, Firoz, 2023. "Optimization and techno-economic assessment of 50 MW floating solar power plant on Hakaluki marsh land in Bangladesh," Renewable Energy, Elsevier, vol. 216(C).
    4. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Muñoz-Cerón, Emilio & Osorio-Aravena, Juan Carlos & Rodríguez-Segura, Francisco Javier & Frolova, Marina & Ruano-Quesada, Antonio, 2023. "Floating photovoltaics systems on water irrigation ponds: Technical potential and multi-benefits analysis," Energy, Elsevier, vol. 271(C).
    6. Kulat, Muhammed Imran & Tosun, Kursad & Karaveli, Abdullah Bugrahan & Yucel, Ismail & Akinoglu, Bulent Gultekin, 2023. "A sound potential against energy dependency and climate change challenges: Floating photovoltaics on water reservoirs of Turkey," Renewable Energy, Elsevier, vol. 206(C), pages 694-709.
    7. Evgeny Solomin & Evgeny Sirotkin & Erdem Cuce & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy, 2021. "Hybrid Floating Solar Plant Designs: A Review," Energies, MDPI, vol. 14(10), pages 1-25, May.
    8. Padilha Campos Lopes, Mariana & Nogueira, Tainan & Santos, Alberto José Leandro & Castelo Branco, David & Pouran, Hamid, 2022. "Technical potential of floating photovoltaic systems on artificial water bodies in Brazil," Renewable Energy, Elsevier, vol. 181(C), pages 1023-1033.
    9. Tercan, Emre & Dereli, Mehmet Ali & Saracoglu, Burak Omer, 2022. "Location alternatives generation and elimination of floatovoltaics with virtual power plant designs," Renewable Energy, Elsevier, vol. 193(C), pages 1150-1163.
    10. Garlet, Taís Bisognin & Ribeiro, José Luis Duarte & de Souza Savian, Fernando & Mairesse Siluk, Julio Cezar, 2019. "Paths and barriers to the diffusion of distributed generation of photovoltaic energy in southern Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 157-169.
    11. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    12. Mohammad K. Najjar & Eduardo Linhares Qualharini & Ahmed W. A. Hammad & Dieter Boer & Assed Haddad, 2019. "Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    13. Alexander E. Cagle & Alona Armstrong & Giles Exley & Steven M. Grodsky & Jordan Macknick & John Sherwin & Rebecca R. Hernandez, 2020. "The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    14. Laura Essak & Aritra Ghosh, 2022. "Floating Photovoltaics: A Review," Clean Technol., MDPI, vol. 4(3), pages 1-18, August.
    15. Yilmaz, Osman Salih & Ateş, Ali Murat & Gülgen, Fatih, 2023. "A novel approach suggestion for assessing the impact of topographic shading on the estimation of the floating photovoltaic technical potential," Energy, Elsevier, vol. 283(C).
    16. Jangwon Suh & Yonghae Jang & Yosoon Choi, 2019. "Comparison of Electric Power Output Observed and Estimated from Floating Photovoltaic Systems: A Case Study on the Hapcheon Dam, Korea," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
    17. Tanu Rizvi & Satya Prakash Dubey & Nagendra Tripathi & Gautam Srivastava & Satya Prakash Makhija & Md. Khaja Mohiddin, 2023. "FSPV-Grid System for an Industrial Subsection with PV Price Sensitivity Analysis," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    18. Ray-Yeng Yang & Sheng-Hung Yu, 2021. "A Study on a Floating Solar Energy System Applied in an Intertidal Zone," Energies, MDPI, vol. 14(22), pages 1-32, November.
    19. Boduch, Andrzej & Mik, Krzysztof & Castro, Rui & Zawadzki, Paweł, 2022. "Technical and economic assessment of a 1 MWp floating photovoltaic system in Polish conditions," Renewable Energy, Elsevier, vol. 196(C), pages 983-994.
    20. Xia, Zilong & Li, Yingjie & Guo, Shanchuan & Chen, Ruishan & Zhang, Wei & Zhang, Peng & Du, Peijun, 2023. "Mapping global water-surface photovoltaics with satellite images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:193:y:2022:i:c:p:264-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.