IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v101y2017icp293-300.html
   My bibliography  Save this article

Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends

Author

Listed:
  • Jayaraman, Kandasamy
  • Kok, Mustafa Versan
  • Gokalp, Iskender

Abstract

In this research, thermogravimetric and mass-spectrometric (TG-MS) analysis and kinetics of coal-biomass blends (25, 50 and 75 wt%) was studied. All the experiments were performed at 20 °C/min. heating rate and under air atmosphere. The reaction regions, peak and burn-out temperatures, mass loss, maximum mass loss rate, combustion index and residue of the samples was determined. This research also focused on the main volatile products release, such as H2, O2, CO, CO2 and hydrocarbons from coal-biomass blends combustion on the basis of both their relative intensities across the temperature range 150–750 °C and on their relevancy. The major release of COS is observed in decomposition stage, whereas significant SO2 release is noticed from combustion. When the percentage of biomass is increases in the coal-biomass blends, maximum rate of mass loss increases indicating the higher reactivity of the samples. The kinetic parameters of the coal-biomass blends were calculated using two different methods (Arrhenius and Coats & Redfern). The activation energy and Arrhenius constant values were increased with the increasing biomass ratio in the blends.

Suggested Citation

  • Jayaraman, Kandasamy & Kok, Mustafa Versan & Gokalp, Iskender, 2017. "Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends," Renewable Energy, Elsevier, vol. 101(C), pages 293-300.
  • Handle: RePEc:eee:renene:v:101:y:2017:i:c:p:293-300
    DOI: 10.1016/j.renene.2016.08.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116307820
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.08.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Ke-Miao & Lee, Wen-Jhy & Chen, Wei-Hsin & Lin, Ta-Chang, 2013. "Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends," Applied Energy, Elsevier, vol. 105(C), pages 57-65.
    2. Sanchez, M.E. & Otero, M. & Gómez, X. & Morán, A., 2009. "Thermogravimetric kinetic analysis of the combustion of biowastes," Renewable Energy, Elsevier, vol. 34(6), pages 1622-1627.
    3. Luo, S.Y. & Xiao, B. & Hu, Z.Q. & Liu, S.M. & Guan, Y.W., 2009. "Experimental study on oxygen-enriched combustion of biomass micro fuel," Energy, Elsevier, vol. 34(11), pages 1880-1884.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ni, Guanhua & Dou, Haoran & Li, Zhao & Zhu, Chuanjie & Sun, Gongshuai & Hu, Xiangming & Wang, Gang & Liu, Yixin & Wang, Zhenyang, 2022. "Study on the combustion characteristics of bituminous coal modified by typical inorganic acids," Energy, Elsevier, vol. 261(PA).
    2. Tariq, Rumaisa & Mohd Zaifullizan, Yasmin & Salema, Arshad Adam & Abdulatif, Atiqah & Ken, Loke Shun, 2022. "Co-pyrolysis and co-combustion of orange peel and biomass blends: Kinetics, thermodynamic, and ANN application," Renewable Energy, Elsevier, vol. 198(C), pages 399-414.
    3. Wen, Yuming & Zaini, Ilman Nuran & Wang, Shule & Mu, Wangzhong & Jönsson, Pär Göran & Yang, Weihong, 2021. "Synergistic effect of the co-pyrolysis of cardboard and polyethylene: A kinetic and thermodynamic study," Energy, Elsevier, vol. 229(C).
    4. Naqvi, Salman Raza & Tariq, Rumaisa & Hameed, Zeeshan & Ali, Imtiaz & Naqvi, Muhammad & Chen, Wei-Hsin & Ceylan, Selim & Rashid, Harith & Ahmad, Junaid & Taqvi, Syed A. & Shahbaz, Muhammad, 2019. "Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method," Renewable Energy, Elsevier, vol. 131(C), pages 854-860.
    5. Ahmad, Razi & Mohd Ishak, Mohd Azlan & Kasim, Nur Nasulhah & Ismail, Khudzir, 2019. "Properties and thermal analysis of upgraded palm kernel shell and Mukah Balingian coal," Energy, Elsevier, vol. 167(C), pages 538-547.
    6. Qiu, Shuxing & Zhang, Shengfu & Zhou, Xiaohu & Zhang, Qingyun & Qiu, Guibao & Hu, Meilong & You, Zhixiong & Wen, Liangying & Bai, Chenguang, 2019. "Thermal behavior and organic functional structure of poplar-fat coal blends during co-pyrolysis," Renewable Energy, Elsevier, vol. 136(C), pages 308-316.
    7. Kijo-Kleczkowska, Agnieszka & Gnatowski, Adam & Krzywanski, Jaroslaw & Gajek, Marcin & Szumera, Magdalena & Tora, Barbara & Kogut, Krzysztof & Knaś, Krzysztof, 2024. "Experimental research and prediction of heat generation during plastics, coal and biomass waste combustion using thermal analysis methods," Energy, Elsevier, vol. 290(C).
    8. Weng, Jun-Jie & Tian, Zhen-Yu & Liu, Yue-Xi & Pan, Yang & Zhu, Ya-Nan, 2020. "Investigation on the co-combustion mechanism of coal and biomass on a fixed-bed reactor with advanced mass spectrometry," Renewable Energy, Elsevier, vol. 149(C), pages 1068-1076.
    9. Jayaraman, Kandasamy & Kök, Mustafa Versan & Gökalp, Iskender, 2020. "Combustion mechanism and model free kinetics of different origin coal samples: Thermal analysis approach," Energy, Elsevier, vol. 204(C).
    10. Zhang, Xin & Deng, Honghu & Hou, Xueyi & Qiu, Rongliang & Chen, Zhihua, 2019. "Pyrolytic behavior and kinetic of wood sawdust at isothermal and non-isothermal conditions," Renewable Energy, Elsevier, vol. 142(C), pages 284-294.
    11. Sahoo, Abhisek & Kumar, Sachin & Mohanty, Kaustubha, 2021. "Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer," Renewable Energy, Elsevier, vol. 165(P1), pages 261-277.
    12. Gao, Wenran & Wang, Jinchuan & Akhtar, Asif & Wei, Juntao & Li, Bin & Xu, Deliang & Zhang, Shu & Zhang, Shoujun & Wu, Yinlong, 2023. "Effects of carbonization on the physical properties and combustion behavior of fiberboard sanding dust pellets," Renewable Energy, Elsevier, vol. 212(C), pages 263-273.
    13. Santos, Carolina Monteiro & de Oliveira, Leandro Soares & Alves Rocha, Elém Patrícia & Franca, Adriana Silva, 2020. "Thermal conversion of defective coffee beans for energy purposes: Characterization and kinetic modeling," Renewable Energy, Elsevier, vol. 147(P1), pages 1275-1291.
    14. Zhenghui Xu & Xiang Xiao & Ping Fang & Lyumeng Ye & Jianhang Huang & Haiwen Wu & Zijun Tang & Dongyao Chen, 2020. "Comparison of Combustion and Pyrolysis Behavior of the Peanut Shells in Air and N 2 : Kinetics, Thermodynamics and Gas Emissions," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    15. Adnan, Muflih A. & Hossain, Mohammad M., 2018. "Gasification of various biomasses including microalgae using CO2 – A thermodynamic study," Renewable Energy, Elsevier, vol. 119(C), pages 598-607.
    16. Hameed, Zeeshan & Aslam, Muhammad & Khan, Zakir & Maqsood, Khuram & Atabani, A.E. & Ghauri, Moinuddin & Khurram, Muhammad Shahzad & Rehan, Mohammad & Nizami, Abdul-Sattar, 2021. "Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    17. Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
    18. Wen, Shaoting & Yan, Youping & Liu, Jingyong & Buyukada, Musa & Evrendilek, Fatih, 2019. "Pyrolysis performance, kinetic, thermodynamic, product and joint optimization analyses of incense sticks in N2 and CO2 atmospheres," Renewable Energy, Elsevier, vol. 141(C), pages 814-827.
    19. Guo, Feihong & He, Yi & Hassanpour, Ali & Gardy, Jabbar & Zhong, Zhaoping, 2020. "Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal," Energy, Elsevier, vol. 197(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santos, Carolina Monteiro & de Oliveira, Leandro Soares & Alves Rocha, Elém Patrícia & Franca, Adriana Silva, 2020. "Thermal conversion of defective coffee beans for energy purposes: Characterization and kinetic modeling," Renewable Energy, Elsevier, vol. 147(P1), pages 1275-1291.
    2. Chen, Chunxiang & Ma, Xiaoqian & Liu, Kai, 2011. "Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations," Applied Energy, Elsevier, vol. 88(9), pages 3189-3196.
    3. Lai, ZhiYi & Ma, XiaoQian & Tang, YuTing & Lin, Hai, 2011. "A study on municipal solid waste (MSW) combustion in N2/O2 and CO2/O2 atmosphere from the perspective of TGA," Energy, Elsevier, vol. 36(2), pages 819-824.
    4. Lu, Jau-Jang & Chen, Wei-Hsin, 2015. "Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis," Applied Energy, Elsevier, vol. 160(C), pages 49-57.
    5. Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki & He, Zhaohong & Osaka, Yugo & Zeng, Tao, 2015. "Numerical study on effect of oxygen content in combustion air on ammonia combustion," Energy, Elsevier, vol. 93(P2), pages 2053-2068.
    6. Mo, Qianci & Zhu, Xishan & Deng, Chenquan & Cen, Shuhai & Ye, Haibo & Wang, Chunqiang & Lu, Wei & Chen, Xiaojun & Lin, Xingsu, 2023. "Analysis on influencing factors and improvement of thermal efficiency of bagasse boilers based on performance test data," Energy, Elsevier, vol. 271(C).
    7. Guo, Feihong & He, Yi & Hassanpour, Ali & Gardy, Jabbar & Zhong, Zhaoping, 2020. "Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal," Energy, Elsevier, vol. 197(C).
    8. Leandro C. de Morais & Amanda A. Maia & Pedro R. Resende & André H. Rosa & Leonel J. R. Nunes, 2022. "Thermochemical Conversion of Sugarcane Bagasse: A Comprehensive Analysis of Ignition and Burnout Temperatures," Clean Technol., MDPI, vol. 4(4), pages 1-11, November.
    9. Dessì, Federica & Mureddu, Mauro & Ferrara, Francesca & Fermoso, Javier & Orsini, Alessandro & Sanna, Aimaro & Pettinau, Alberto, 2021. "Thermogravimetric characterisation and kinetic analysis of Nannochloropsis sp. and Tetraselmis sp. microalgae for pyrolysis, combustion and oxy-combustion," Energy, Elsevier, vol. 217(C).
    10. Leonel J. R. Nunes & Abel M. Rodrigues & João C. O. Matias & Ana I. Ferraz & Ana C. Rodrigues, 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
    11. Li, Xiangyu & Li, Guangyu & Li, Jian & Yu, Yanqing & Feng, Yu & Chen, Qun & Komarneni, Sridhar & Wang, Yujue, 2016. "Producing petrochemicals from catalytic fast pyrolysis of corn fermentation residual by-products generated from citric acid production," Renewable Energy, Elsevier, vol. 89(C), pages 331-338.
    12. Wu, Zhiqiang & Yang, Wangcai & Meng, Haiyu & Zhao, Jun & Chen, Lin & Luo, Zhengyuan & Wang, Shuzhong, 2017. "Physicochemical structure and gasification reactivity of co-pyrolysis char from two kinds of coal blended with lignocellulosic biomass: Effects of the carboxymethylcellulose sodium," Applied Energy, Elsevier, vol. 207(C), pages 96-106.
    13. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko, 2015. "From fossil fuels towards renewables: Inhibitory and catalytic effects on carbon thermochemical conversion during co-gasification of biomass with fossil fuels," Applied Energy, Elsevier, vol. 140(C), pages 196-209.
    14. Bujak, Janusz Wojciech, 2015. "New insights into waste management – Meat industry," Renewable Energy, Elsevier, vol. 83(C), pages 1174-1186.
    15. Ghiasi, Bahman & Kumar, Linoj & Furubayashi, Takaaki & Lim, C. Jim & Bi, Xiaotao & Kim, Chang Soo & Sokhansanj, Shahab, 2014. "Densified biocoal from woodchips: Is it better to do torrefaction before or after densification?," Applied Energy, Elsevier, vol. 134(C), pages 133-142.
    16. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    18. Fidalgo, B. & Chilmeran, M. & Somorin, T. & Sowale, A. & Kolios, A. & Parker, A. & Williams, L. & Collins, M. & McAdam, E.J. & Tyrrel, S., 2019. "Non-isothermal thermogravimetric kinetic analysis of the thermochemical conversion of human faeces," Renewable Energy, Elsevier, vol. 132(C), pages 1177-1184.
    19. Dai, Ying & Sun, Meng & Fang, Hua & Yao, Huicong & Chen, Jianbiao & Tan, Jinzhu & Mu, Lin & Zhu, Yuezhao, 2024. "Co-combustion of binary and ternary blends of industrial sludge, lignite and pine sawdust via thermogravimetric analysis: Thermal behaviors, interaction effects, kinetics evaluation, and artificial ne," Renewable Energy, Elsevier, vol. 220(C).
    20. João Silva & Senhorinha Teixeira & José Teixeira, 2023. "A Review of Biomass Thermal Analysis, Kinetics and Product Distribution for Combustion Modeling: From the Micro to Macro Perspective," Energies, MDPI, vol. 16(18), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:101:y:2017:i:c:p:293-300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.