IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ics0360544223011635.html
   My bibliography  Save this article

Dynamic performance and sustainability assessment of a PV driven Carnot battery

Author

Listed:
  • Canpolat Tosun, Demet
  • Açıkkalp, Emin
  • Altuntas, Onder
  • Hepbasli, Arif
  • Palmero-Marrero, Ana I.
  • Borge-Diez, David

Abstract

This study investigates the performance of a Carnot Battery and performs a thermodynamic-based sustainability analysis using different methods. Carnot batteries have two different operational processes, charge and discharge. Electricity generated from a renewable source is used to operate a heat pump and the heat rejected by the heat pump is stored in the battery, which is then used to generate electricity in the Organic Rankine Cycle (ORC) at night and called as the discharge process. Climatic data from the city of Izmir, the third largest city by population in Turkey, has been chosen for the dynamic analysis. Exergy-based sustainability and thermo-ecological cost analyses are performed. The results show that the maximum Coefficient of Performance (COP) of the heat pump system is 4.5, the exergy efficiency can reach 0.78 and its the maximum sustainability index is 4.5. For the discharge process, energy efficiency of the ORC is 0.118 while the exergy efficiency is around 0.49 with a sustainability value of about 2.0.

Suggested Citation

  • Canpolat Tosun, Demet & Açıkkalp, Emin & Altuntas, Onder & Hepbasli, Arif & Palmero-Marrero, Ana I. & Borge-Diez, David, 2023. "Dynamic performance and sustainability assessment of a PV driven Carnot battery," Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223011635
    DOI: 10.1016/j.energy.2023.127769
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223011635
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vaclav Novotny & Vit Basta & Petr Smola & Jan Spale, 2022. "Review of Carnot Battery Technology Commercial Development," Energies, MDPI, vol. 15(2), pages 1-33, January.
    2. Benato, Alberto, 2017. "Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system," Energy, Elsevier, vol. 138(C), pages 419-436.
    3. Gładysz, Paweł & Saari, Jussi & Czarnowska, Lucyna, 2020. "Thermo-ecological cost analysis of cogeneration and polygeneration energy systems - Case study for thermal conversion of biomass," Renewable Energy, Elsevier, vol. 145(C), pages 1748-1760.
    4. Stanek, Wojciech & Czarnowska, Lucyna & Gazda, Wiesław & Simla, Tomasz, 2018. "Thermo-ecological cost of electricity from renewable energy sources," Renewable Energy, Elsevier, vol. 115(C), pages 87-96.
    5. Liang, Ting & Vecchi, Andrea & Knobloch, Kai & Sciacovelli, Adriano & Engelbrecht, Kurt & Li, Yongliang & Ding, Yulong, 2022. "Key components for Carnot Battery: Technology review, technical barriers and selection criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    6. Chen, Lingen & Liu, Xiaowei & Wu, Feng & Xia, Shaojun & Feng, Huijun, 2020. "Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with harmonic oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    7. Rosen, Marc A. & Dincer, Ibrahim & Kanoglu, Mehmet, 2008. "Role of exergy in increasing efficiency and sustainability and reducing environmental impact," Energy Policy, Elsevier, vol. 36(1), pages 128-137, January.
    8. Huijun Feng & Wei Tang & Lingen Chen & Junchao Shi & Zhixiang Wu, 2021. "Multi-Objective Constructal Optimization for Marine Condensers," Energies, MDPI, vol. 14(17), pages 1-18, September.
    9. Feng, Huijun & Xie, Zhuojun & Chen, Lingen & Wu, Zhixiang & Xia, Shaojun, 2020. "Constructal design for supercharged boiler superheater," Energy, Elsevier, vol. 191(C).
    10. Morandin, Matteo & Maréchal, François & Mercangöz, Mehmet & Buchter, Florian, 2012. "Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part B: Alternative system configurations," Energy, Elsevier, vol. 45(1), pages 386-396.
    11. Stanek, Wojciech, 2022. "Thermo-Ecological Cost (TEC) –comparison of energy-ecological efficiency of renewable and non-renewable energy technologies," Energy, Elsevier, vol. 261(PA).
    12. Eppinger, Bernd & Steger, Daniel & Regensburger, Christoph & Karl, Jürgen & Schlücker, Eberhard & Will, Stefan, 2021. "Carnot battery: Simulation and design of a reversible heat pump-organic Rankine cycle pilot plant," Applied Energy, Elsevier, vol. 288(C).
    13. Ali Khalid Shaker Al-Sayyab & Joaquín Navarro-Esbrí & Victor Manuel Soto-Francés & Adrián Mota-Babiloni, 2021. "Conventional and Advanced Exergoeconomic Analysis of a Compound Ejector-Heat Pump for Simultaneous Cooling and Heating," Energies, MDPI, vol. 14(12), pages 1-27, June.
    14. Tassenoy, Robin & Couvreur, Kenny & Beyne, Wim & De Paepe, Michel & Lecompte, Steven, 2022. "Techno-economic assessment of Carnot batteries for load-shifting of solar PV production of an office building," Renewable Energy, Elsevier, vol. 199(C), pages 1133-1144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbara, Christian Enrico & D Adamo, Idiano & Gastaldi, Massimo & Nizami, Abdul Sattar, 2024. "Clean energy for a sustainable future: Analysis of a PV system and LED bulbs in a hotel," Energy, Elsevier, vol. 299(C).
    2. Qu, Jinbo & Feng, Yongming & Wu, Binyang & Zhu, Yuanqing & Wang, Jiaqi, 2024. "Understanding the thermodynamic behaviors of integrated system including solid oxide fuel cell and Carnot battery based on finite time thermodynamics," Applied Energy, Elsevier, vol. 372(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weitzer, Maximilian & Müller, Dominik & Karl, Jürgen, 2022. "Two-phase expansion processes in heat pump – ORC systems (Carnot batteries) with volumetric machines for enhanced off-design efficiency," Renewable Energy, Elsevier, vol. 199(C), pages 720-732.
    2. Huijun Feng & Lingen Chen & Wei Tang & Yanlin Ge, 2022. "Optimal Design of a Dual-Pressure Steam Turbine for Rankine Cycle Based on Constructal Theory," Energies, MDPI, vol. 15(13), pages 1-20, July.
    3. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    4. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    5. Yong, Qingqing & Jin, Kaiyuan & Li, Xiaobo & Yang, Ronggui, 2023. "Thermo-economic analysis for a novel grid-scale pumped thermal electricity storage system coupled with a coal-fired power plant," Energy, Elsevier, vol. 280(C).
    6. Wang, Liang & Lin, Xipeng & Chai, Lei & Peng, Long & Yu, Dong & Chen, Haisheng, 2019. "Cyclic transient behavior of the Joule–Brayton based pumped heat electricity storage: Modeling and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 523-534.
    7. Niu, Jintao & Wang, Jiansheng & Liu, Xueling, 2023. "Thermodynamic and economic analysis of organic Rankine cycle combined with flash cycle and ejector," Energy, Elsevier, vol. 282(C).
    8. Sui, Yunren & Lin, Haosheng & Ding, Zhixiong & Li, Fuxiang & Sui, Zengguang & Wu, Wei, 2024. "Compact, efficient, and affordable absorption Carnot battery for long-term renewable energy storage," Applied Energy, Elsevier, vol. 357(C).
    9. Tassenoy, Robin & Couvreur, Kenny & Beyne, Wim & De Paepe, Michel & Lecompte, Steven, 2022. "Techno-economic assessment of Carnot batteries for load-shifting of solar PV production of an office building," Renewable Energy, Elsevier, vol. 199(C), pages 1133-1144.
    10. Dong Zhao & Shuyan Sun & Hosein Alavi, 2022. "Simulation and optimization of a Carnot battery process including a heat pump/organic Rankine cycle with considering the role of the regenerator [Robust multi-objective optimal design of islanded h," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 870-878.
    11. Alberto Benato & Francesco De Vanna & Anna Stoppato, 2022. "Levelling the Photovoltaic Power Profile with the Integrated Energy Storage System," Energies, MDPI, vol. 15(24), pages 1-21, December.
    12. Alsagri, Ali Sulaiman, 2023. "An innovative design of solar-assisted carnot battery for multigeneration of power, cooling, and process heating: Techno-economic analysis and optimization," Renewable Energy, Elsevier, vol. 210(C), pages 375-385.
    13. Wu, Ding & Ma, Bo & Zhang, Ji & Chen, Yanqi & Shen, Feifan & Chen, Xun & Wen, Chuang & Yang, Yan, 2024. "Working fluid pair selection of thermally integrated pumped thermal electricity storage system for waste heat recovery and energy storage," Applied Energy, Elsevier, vol. 371(C).
    14. Stefano Barberis & Simone Maccarini & Syed Safeer Mehdi Shamsi & Alberto Traverso, 2023. "Untapping Industrial Flexibility via Waste Heat-Driven Pumped Thermal Energy Storage Systems," Energies, MDPI, vol. 16(17), pages 1-24, August.
    15. Josefine Koksharov & Lauritz Zendel & Frank Dammel & Peter Stephan, 2024. "Thermodynamic, Economic and Maturity Analysis of a Carnot Battery with a Two-Zone Water Thermal Energy Storage for Different Working Fluids," Energies, MDPI, vol. 17(2), pages 1-20, January.
    16. Attila R. Imre & Sindu Daniarta & Przemysław Błasiak & Piotr Kolasiński, 2023. "Design, Integration, and Control of Organic Rankine Cycles with Thermal Energy Storage and Two-Phase Expansion System Utilizing Intermittent and Fluctuating Heat Sources—A Review," Energies, MDPI, vol. 16(16), pages 1-25, August.
    17. Frate, Guido Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2021. "Energy storage for grid-scale applications: Technology review and economic feasibility analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1754-1772.
    18. Li, Zhaojin & Bi, Yuehong & Wang, Cun & Shi, Qi & Mou, Tianhong, 2023. "Finite time thermodynamic optimization for performance of absorption energy storage systems," Energy, Elsevier, vol. 282(C).
    19. Al-Sayyab, Ali Khalid Shaker & Mota-Babiloni, Adrián & Navarro-Esbrí, Joaquín, 2023. "Performance evaluation of modified compound organic Rankine-vapour compression cycle with two cooling levels, heating, and power generation," Applied Energy, Elsevier, vol. 334(C).
    20. Matteo Marchionni & Roberto Cipollone, 2023. "Liquid CO 2 and Liquid Air Energy Storage Systems: A Thermodynamic Analysis," Energies, MDPI, vol. 16(13), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223011635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.