IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i5d10.1007_s11269-021-02821-7.html
   My bibliography  Save this article

Optimal Design and Operation of a Hydropower Reservoir Plant Using a WEAP-Based Simulation–Optimization Approach

Author

Listed:
  • Amir Hatamkhani

    (Shahid Beheshti University)

  • Mojtaba Shourian

    (Shahid Beheshti University)

  • Ali Moridi

    (Shahid Beheshti University)

Abstract

Optimal design and operation of a hydropower reservoir is a complex optimization problem in terms of formulation and solution. In this study, a simulation–optimization model is developed for simultaneous design and operation of hydropower dams. WEAP (Water Evaluation and Planning) as the water resources planning simulation software is coupled with the Invasive Weeds Optimization (IWO) as the optimization routine. The developed simulation–optimization model is used for the Bakhtiari Dam hydropower plant in west of Iran. Two objectives for solving the problem are to maximize the energy generation and minimize the flood damage at a downstream target point. Two types of problems are investigated. The first problem only considers the optimal design of the hydropower plan, in which the decision variables include the storage capacity, minimum operation storage of the reservoir and the installed capacity of the power plant while the releases from the reservoir are determined using a predefined operation policy. In the second problem, simultaneous design and operation of the hydropower reservoir is examined where in addition to the design variables, the reservoir releases are also optimized as the operational variables. According to the results, although considering flood damage does not have much effect on design variables, but significantly affects the operation variables. Results show that the optimization of the design variables has more impact on the benefit gained from the system comparing the operational ones. Also, the standard operating policy (SOP) is an optimal or near-optimal operational solution for hydropower generation.

Suggested Citation

  • Amir Hatamkhani & Mojtaba Shourian & Ali Moridi, 2021. "Optimal Design and Operation of a Hydropower Reservoir Plant Using a WEAP-Based Simulation–Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1637-1652, March.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:5:d:10.1007_s11269-021-02821-7
    DOI: 10.1007/s11269-021-02821-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02821-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02821-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen-jing Niu & Zhong-kai Feng & Shuai Liu & Yu-bin Chen & Yin-shan Xu & Jun Zhang, 2021. "Multiple Hydropower Reservoirs Operation by Hyperbolic Grey Wolf Optimizer Based on Elitism Selection and Adaptive Mutation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 573-591, January.
    2. Qiao-feng Tan & Guo-hua Fang & Xin Wen & Xiao-hui Lei & Xu Wang & Chao Wang & Yi Ji, 2020. "Bayesian Stochastic Dynamic Programming for Hydropower Generation Operation Based on Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1589-1607, March.
    3. Hatamkhani, Amir & Moridi, Ali & Yazdi, Jafar, 2020. "A simulation – Optimization models for multi-reservoir hydropower systems design at watershed scale," Renewable Energy, Elsevier, vol. 149(C), pages 253-263.
    4. Yuan Si & Xiang Li & Dongqin Yin & Ronghua Liu & Jiahua Wei & Yuefei Huang & Tiejian Li & Jiahong Liu & Shenglong Gu & Guangqian Wang, 2018. "Evaluating and optimizing the operation of the hydropower system in the Upper Yellow River: A general LINGO-based integrated framework," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-25, January.
    5. Fang-Fang Li & Jun Qiu, 2015. "Multi-Objective Reservoir Optimization Balancing Energy Generation and Firm Power," Energies, MDPI, vol. 8(7), pages 1-15, July.
    6. Mohammad Azizipour & Vahid Ghalenoei & M. H. Afshar & S. S. Solis, 2016. "Optimal Operation of Hydropower Reservoir Systems Using Weed Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3995-4009, September.
    7. Amir Hatamkhani & Ali Moridi, 2019. "Multi-Objective Optimization of Hydropower and Agricultural Development at River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4431-4450, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hatamkhani, Amir & Moridi, Ali & Haghighi, Ali Torabi, 2023. "Incorporating ecosystem services value into the optimal development of hydropower projects," Renewable Energy, Elsevier, vol. 203(C), pages 495-505.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hatamkhani, Amir & Moridi, Ali & Haghighi, Ali Torabi, 2023. "Incorporating ecosystem services value into the optimal development of hydropower projects," Renewable Energy, Elsevier, vol. 203(C), pages 495-505.
    2. Hatamkhani, Amir & Moridi, Ali & Yazdi, Jafar, 2020. "A simulation – Optimization models for multi-reservoir hydropower systems design at watershed scale," Renewable Energy, Elsevier, vol. 149(C), pages 253-263.
    3. Katerina Spanoudaki & Panayiotis Dimitriadis & Emmanouil A. Varouchakis & Gerald A. Corzo Perez, 2022. "Estimation of Hydropower Potential Using Bayesian and Stochastic Approaches for Streamflow Simulation and Accounting for the Intermediate Storage Retention," Energies, MDPI, vol. 15(4), pages 1-20, February.
    4. Wen-jing Niu & Zhong-kai Feng & Yu-rong Li & Shuai Liu, 2021. "Cooperation Search Algorithm for Power Generation Production Operation Optimization of Cascade Hydropower Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2465-2485, June.
    5. Wang, Youzhi & Guo, Shanshan & Yue, Qing & Mao, Xiaomin & Guo, Ping, 2021. "Distributed AquaCrop simulation-nonlinear multi-objective dependent-chance programming for irrigation water resources management under uncertainty," Agricultural Water Management, Elsevier, vol. 247(C).
    6. Yury Sekretarev & Tatyana Myateg & Aminjon Gulakhmadov & Murodbek Safaraliev & Sergey Mitrofanov & Natalya Zubova & Olga Atamanova & Xi Chen, 2022. "Models of Optimal Operating Modes of the Water-Economic Complex on the Basis of Hydro Resource Price Evaluation," Mathematics, MDPI, vol. 10(5), pages 1-30, February.
    7. Bao-Jian Li & Guo-Liang Sun & Yan Liu & Wen-Chuan Wang & Xu-Dong Huang, 2022. "Monthly Runoff Forecasting Using Variational Mode Decomposition Coupled with Gray Wolf Optimizer-Based Long Short-term Memory Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2095-2115, April.
    8. Jianjian Shen & Xiufei Zhang & Jian Wang & Rui Cao & Sen Wang & Jun Zhang, 2019. "Optimal Operation of Interprovincial Hydropower System Including Xiluodu and Local Plants in Multiple Recipient Regions," Energies, MDPI, vol. 12(1), pages 1-19, January.
    9. Liu, Yuan & Ji, Changming & Wang, Yi & Zhang, Yanke & Jiang, Zhiqiang & Ma, Qiumei & Hou, Xiaoning, 2023. "Effect of the quality of streamflow forecasts on the operation of cascade hydropower stations using stochastic optimization models," Energy, Elsevier, vol. 273(C).
    10. Vijendra Kumar & S. M. Yadav, 2018. "Optimization of Reservoir Operation with a New Approach in Evolutionary Computation Using TLBO Algorithm and Jaya Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4375-4391, October.
    11. J. Yazdi & A. Moridi, 2018. "Multi-Objective Differential Evolution for Design of Cascade Hydropower Reservoir Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4779-4791, November.
    12. Mahdi Valikhan-Anaraki & Sayed-Farhad Mousavi & Saeed Farzin & Hojat Karami & Mohammad Ehteram & Ozgur Kisi & Chow Ming Fai & Md. Shabbir Hossain & Gasim Hayder & Ali Najah Ahmed & Amr H. El-Shafie & , 2019. "Development of a Novel Hybrid Optimization Algorithm for Minimizing Irrigation Deficiencies," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    13. Ahmad Hamidov & Katharina Helming, 2020. "Sustainability Considerations in Water–Energy–Food Nexus Research in Irrigated Agriculture," Sustainability, MDPI, vol. 12(15), pages 1-20, August.
    14. Wu, Xinyu & Wu, Yiyang & Cheng, Xilong & Cheng, Chuntian & Li, Zehong & Wu, Yongqi, 2023. "A mixed-integer linear programming model for hydro unit commitment considering operation constraint priorities," Renewable Energy, Elsevier, vol. 204(C), pages 507-520.
    15. Zhong-Kai Feng & Wen-Jing Niu & Jian-Zhong Zhou & Chun-Tian Cheng & Hui Qin & Zhi-Qiang Jiang, 2017. "Parallel Multi-Objective Genetic Algorithm for Short-Term Economic Environmental Hydrothermal Scheduling," Energies, MDPI, vol. 10(2), pages 1-22, January.
    16. Ahmadianfar, Iman & Kheyrandish, Ali & Jamei, Mehdi & Gharabaghi, Bahram, 2021. "Optimizing operating rules for multi-reservoir hydropower generation systems: An adaptive hybrid differential evolution algorithm," Renewable Energy, Elsevier, vol. 167(C), pages 774-790.
    17. Ahmad, Shahryar Khalique & Hossain, Faisal, 2020. "Maximizing energy production from hydropower dams using short-term weather forecasts," Renewable Energy, Elsevier, vol. 146(C), pages 1560-1577.
    18. Xinyi Zhang & Guohua Fang & Jian Ye & Jin Liu & Xin Wen & Chengjun Wu, 2022. "Risk Control in Optimization of Cascade Hydropower: Considering Water Abandonment Risk Probability," Sustainability, MDPI, vol. 14(17), pages 1-14, August.
    19. Chengjun Wu & Guohua Fang & Tao Liao & Xianfeng Huang & Bo Qu, 2020. "Integrated Software Development and Case Studies for Optimal Operation of Cascade Reservoir within the Environmental Flow Constraints," Sustainability, MDPI, vol. 12(10), pages 1-16, May.
    20. Fatemeh Barzegari Banadkooki & Jan Adamowski & Vijay P. Singh & Mohammad Ehteram & Hojat Karami & Sayed Farhad Mousavi & Saeed Farzin & Ahmed EL-Shafie, 2020. "Crow Algorithm for Irrigation Management: A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1021-1045, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:5:d:10.1007_s11269-021-02821-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.