IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics0960148124010000.html
   My bibliography  Save this article

An MILP model based on a processing strategy of complex multisource constraints for the short-term peak shaving operation of large-scale cascaded hydropower plants

Author

Listed:
  • Fang, Zhou
  • Liao, Shengli
  • Zhao, Hongye
  • Cheng, Chuntian
  • Liu, Benxi
  • Wang, Huan
  • Li, Shushan

Abstract

Hydropower with flexible regulation plays an important role in short-term peak shaving operations. However, short-term peak shaving operation is a challenging problem due to the large scale, the nonconvex and nonlinear characteristics, and the complex multisource tasks. This study proposes a mixed integer linear programming (MILP) model, termed MILPoPSC, based on a processing strategy for complex multisource constraints, tailored for short-term peak shaving in large-scale cascaded hydropower plants. The MILP model, designed to incorporate multisource tasks by abstracting them into constraints, ensures that task requirements are met. A novel multisource constraint transformation method is introduced to derive constraint expressions related to power flow, facilitating the unification of constrained variables. Additionally, a classification and integration method based on restriction mode and set theory is proposed to improve solving efficiency by integrating constrains of the same type. The proposed method was applied to 7 hydropower cascade plants in the Wujiang River. The results showed that the linearization method and the processing strategy of complex multisource constraints can successfully reduce the complexity of the MILP model without affecting the solution quality. This indicates that MILPoPSC has good practical value for the short-term peak shaving operation of large-scale cascaded hydropower plants in China.

Suggested Citation

  • Fang, Zhou & Liao, Shengli & Zhao, Hongye & Cheng, Chuntian & Liu, Benxi & Wang, Huan & Li, Shushan, 2024. "An MILP model based on a processing strategy of complex multisource constraints for the short-term peak shaving operation of large-scale cascaded hydropower plants," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010000
    DOI: 10.1016/j.renene.2024.120932
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124010000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120932?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.