IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp672-686.html
   My bibliography  Save this article

Mapping the potential for a combined generation of electricity and industrial process heat in the northeast of Brazil - Case study: Bahia

Author

Listed:
  • Tiba, Chigueru
  • Bezerra Azevedo, Veronica Wilma
  • Paes, Marcos Diego A.C.
  • Souza, Leonardo F.L. de

Abstract

Industrial Process Heat represents a large part of the energy demands of industries. A parabolic trough solar plant with cogeneration can meet the thermal and electric demand of these industries, mainly at medium and low temperatures.

Suggested Citation

  • Tiba, Chigueru & Bezerra Azevedo, Veronica Wilma & Paes, Marcos Diego A.C. & Souza, Leonardo F.L. de, 2022. "Mapping the potential for a combined generation of electricity and industrial process heat in the northeast of Brazil - Case study: Bahia," Renewable Energy, Elsevier, vol. 199(C), pages 672-686.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:672-686
    DOI: 10.1016/j.renene.2022.09.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122013672
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schoeneberger, Carrie A. & McMillan, Colin A. & Kurup, Parthiv & Akar, Sertac & Margolis, Robert & Masanet, Eric, 2020. "Solar for industrial process heat: A review of technologies, analysis approaches, and potential applications in the United States," Energy, Elsevier, vol. 206(C).
    2. Soria, Rafael & Portugal-Pereira, Joana & Szklo, Alexandre & Milani, Rodrigo & Schaeffer, Roberto, 2015. "Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil," Energy Policy, Elsevier, vol. 86(C), pages 57-72.
    3. Reichling, J.P. & Kulacki, F.A., 2008. "Utility scale hybrid wind–solar thermal electrical generation: A case study for Minnesota," Energy, Elsevier, vol. 33(4), pages 626-638.
    4. Santos-Alamillos, F.J. & Pozo-Vázquez, D. & Ruiz-Arias, J.A. & Von Bremen, L. & Tovar-Pescador, J., 2015. "Combining wind farms with concentrating solar plants to provide stable renewable power," Renewable Energy, Elsevier, vol. 76(C), pages 539-550.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ehtiwesh, Amin & Kutlu, Cagri & Su, Yuehong & Riffat, Saffa, 2023. "Modelling and performance evaluation of a direct steam generation solar power system coupled with steam accumulator to meet electricity demands for a hospital under typical climate conditions in Libya," Renewable Energy, Elsevier, vol. 206(C), pages 795-807.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    2. Georgios E. Arnaoutakis & Georgia Kefala & Eirini Dakanali & Dimitris Al. Katsaprakakis, 2022. "Combined Operation of Wind-Pumped Hydro Storage Plant with a Concentrating Solar Power Plant for Insular Systems: A Case Study for the Island of Rhodes," Energies, MDPI, vol. 15(18), pages 1-23, September.
    3. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    4. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Rao Fu & Kun Peng & Peng Wang & Honglin Zhong & Bin Chen & Pengfei Zhang & Yiyi Zhang & Dongyang Chen & Xi Liu & Kuishuang Feng & Jiashuo Li, 2023. "Tracing metal footprints via global renewable power value chains," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    7. Santos-Alamillos, F.J. & Thomaidis, N.S. & Usaola-García, J. & Ruiz-Arias, J.A. & Pozo-Vázquez, D., 2017. "Exploring the mean-variance portfolio optimization approach for planning wind repowering actions in Spain," Renewable Energy, Elsevier, vol. 106(C), pages 335-342.
    8. Middelhoff, Ella & Madden, Ben & Ximenes, Fabiano & Carney, Catherine & Florin, Nick, 2022. "Assessing electricity generation potential and identifying possible locations for siting hybrid concentrated solar biomass (HCSB) plants in New South Wales (NSW), Australia," Applied Energy, Elsevier, vol. 305(C).
    9. Stanek, Bartosz & Węcel, Daniel & Bartela, Łukasz & Rulik, Sebastian, 2022. "Solar tracker error impact on linear absorbers efficiency in parabolic trough collector – Optical and thermodynamic study," Renewable Energy, Elsevier, vol. 196(C), pages 598-609.
    10. Qi Wang & Ping Chang & Runqing Bai & Wenfei Liu & Jianfeng Dai & Yi Tang, 2019. "Mitigation Strategy for Duck Curve in High Photovoltaic Penetration Power System Using Concentrating Solar Power Station," Energies, MDPI, vol. 12(18), pages 1-16, September.
    11. Gutiérrez, R.E. & Haro, P. & Gómez-Barea, A., 2021. "Techno-economic and operational assessment of concentrated solar power plants with a dual supporting system," Applied Energy, Elsevier, vol. 302(C).
    12. Alexander Kies & Bruno U. Schyska & Lueder Von Bremen, 2016. "The Demand Side Management Potential to Balance a Highly Renewable European Power System," Energies, MDPI, vol. 9(11), pages 1-14, November.
    13. Kougias, Ioannis & Szabó, Sándor & Monforti-Ferrario, Fabio & Huld, Thomas & Bódis, Katalin, 2016. "A methodology for optimization of the complementarity between small-hydropower plants and solar PV systems," Renewable Energy, Elsevier, vol. 87(P2), pages 1023-1030.
    14. Schyska, Bruno U. & Kies, Alexander, 2020. "How regional differences in cost of capital influence the optimal design of power systems," Applied Energy, Elsevier, vol. 262(C).
    15. Omoyemeh J. Ile & Hanna McCormick & Sheila Skrabacz & Shamik Bhattacharya & Maricar Aguilos & Henrique D. R. Carvalho & Joshua Idassi & Justin Baker & Joshua L. Heitman & John S. King, 2022. "Integrating Short Rotation Woody Crops into Conventional Agricultural Practices in the Southeastern United States: A Review," Land, MDPI, vol. 12(1), pages 1-26, December.
    16. Chen, Jinli & Xiao, Gang & Xu, Haoran & Zhou, Xin & Yang, Jiamin & Ni, Mingjiang & Cen, Kefa, 2022. "Experiment and dynamic simulation of a solar tower collector system for power generation," Renewable Energy, Elsevier, vol. 196(C), pages 946-958.
    17. Karl Ezra S. Pilario & Jessa A. Ibañez & Xaviery N. Penisa & Johndel B. Obra & Carl Michael F. Odulio & Joey D. Ocon, 2022. "Spatio-Temporal Solar–Wind Complementarity Assessment in the Province of Kalinga-Apayao, Philippines Using Canonical Correlation Analysis," Sustainability, MDPI, vol. 14(6), pages 1-12, March.
    18. Jahangiri, Mehdi & Ghaderi, Reza & Haghani, Ahmad & Nematollahi, Omid, 2016. "Finding the best locations for establishment of solar-wind power stations in Middle-East using GIS: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 38-52.
    19. Pang, Simian & Zheng, Zixuan & Xiao, Xianyong & Huang, Chunjun & Zhang, Shu & Li, Jie & Zong, Yi & You, Shi, 2022. "Collaborative power tracking method of diversified thermal loads for optimal demand response: A MILP-Based decomposition algorithm," Applied Energy, Elsevier, vol. 327(C).
    20. Chen, Hsing Hung & Kang, He-Yau & Lee, Amy H.I., 2010. "Strategic selection of suitable projects for hybrid solar-wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 413-421, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:672-686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.