Simulating the pyrolysis interactions among hemicellulose, cellulose and lignin in wood waste under real conditions to find the proper way to prepare bio-oil
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2023.02.015
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ma, Liyang & Goldfarb, Jillian L. & Ma, Qiulin, 2022. "Enabling lower temperature pyrolysis with aqueous ionic liquid pretreatment as a sustainable approach to rice husk conversion to biofuels," Renewable Energy, Elsevier, vol. 198(C), pages 712-722.
- Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
- Sun, Ce & Li, Wenlong & Chen, Xiaojian & Li, Changxin & Tan, Haiyan & Zhang, Yanhua, 2021. "Synergistic interactions for saving energy and promoting the co-pyrolysis of polylactic acid and wood flour," Renewable Energy, Elsevier, vol. 171(C), pages 254-265.
- Sun, Hao & Bi, Haobo & Jiang, Chunlong & Ni, Zhanshi & Tian, Junjian & Zhou, Wenliang & Qiu, Zhicong & Lin, Qizhao, 2022. "Experimental study of the co-pyrolysis of sewage sludge and wet waste via TG-FTIR-GC and artificial neural network model: Synergistic effect, pyrolysis kinetics and gas products," Renewable Energy, Elsevier, vol. 184(C), pages 1-14.
- Chen, Zhiyun & Chen, Huashan & Wu, Xieyuan & Zhang, Junhui & Evrendilek, Deniz Eren & Liu, Jingyong & Liang, Guanjie & Li, Weixin, 2021. "Temperature- and heating rate-dependent pyrolysis mechanisms and emissions of Chinese medicine residues and numerical reconstruction and optimization of their non-linear dynamics," Renewable Energy, Elsevier, vol. 164(C), pages 1408-1423.
- Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Mumbach, Guilherme Davi & de Sena, Rennio Felix & Machado, Ricardo Antonio Francisco & Marangoni, Cintia, 2022. "Prospection of catole coconut (Syagrus cearensis) as a new bioenergy feedstock: Insights from physicochemical characterization, pyrolysis kinetics, and thermodynamics parameters," Renewable Energy, Elsevier, vol. 181(C), pages 207-218.
- Zhong, Dian & Zeng, Kuo & Li, Jun & Qiu, Yi & Flamant, Gilles & Nzihou, Ange & Vladimirovich, Vasilevich Sergey & Yang, Haiping & Chen, Hanping, 2022. "Characteristics and evolution of heavy components in bio-oil from the pyrolysis of cellulose, hemicellulose and lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Merdun, Hasan & Laougé, Zakari Boubacar, 2021. "Kinetic and thermodynamic analyses during co-pyrolysis of greenhouse wastes and coal by TGA," Renewable Energy, Elsevier, vol. 163(C), pages 453-464.
- Wu, Kai & Yang, Ke & Zhu, Yiwen & Luo, Bingbing & Chu, Chenyang & Li, Mingfan & Zhang, Yuanjian & Zhang, Huiyan, 2023. "The co-pyrolysis interactionsof isolated lignins and cellulose by experiments and theoretical calculations," Energy, Elsevier, vol. 263(PC).
- Ansari, Khursheed B. & Kamal, Bushra & Beg, Sidra & Wakeel Khan, Md. Aquib & Khan, Mohd Shariq & Al Mesfer, Mohammed K. & Danish, Mohd., 2021. "Recent developments in investigating reaction chemistry and transport effects in biomass fast pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Qi, Penggang & Su, Yinhai & Yang, Liren & Wang, Jiaxing & Jiang, Mei & Xiong, Yuanquan, 2024. "Catalytic pyrolysis of rice husk to co-produce hydrogen-rich syngas, phenol-rich bio-oil and nanostructured porous carbon," Energy, Elsevier, vol. 298(C).
- Song, Hao & Xia, Jiageng & Hu, Qiang & Cheng, Wei & Yang, Yang & Chen, Hanping & Yang, Haiping, 2024. "Comprehensive experimental assessment of biomass steam gasification with different types: correlation and multiple linear regression analysis with feedstock characteristics," Renewable Energy, Elsevier, vol. 237(PA).
- Andrzej Mianowski & Tomasz Radko & Rafał Bigda, 2024. "Elements of Transition-State Theory in Relation to the Thermal Dissociation of Selected Solid Compounds," Energies, MDPI, vol. 17(11), pages 1-26, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alsulami, Radi A. & El-Sayed, Saad A. & Eltaher, Mohamed A. & Mohammad, Akram & Almitani, Khalid H. & Mostafa, Mohamed E., 2023. "Pyrolysis kinetics and thermal degradation characteristics of coffee, date seed, and prickly pear wastes and their blends," Renewable Energy, Elsevier, vol. 216(C).
- Hu, Mao & Guo, Kai & Zhou, Haiqin & Shen, Fei & Zhu, Wenkun & Dai, Lichun, 2024. "Insights into the kinetics, thermodynamics and evolved gases for the pyrolysis of freshly excreted and solid-liquid separated swine manures," Energy, Elsevier, vol. 288(C).
- Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.
- Pambudi, Suluh & Jongyingcharoen, Jiraporn Sripinyowanich & Saechua, Wanphut, 2024. "Machine learning based prediction and iso-conversional assessment of oxidatively torrefied spent coffee grounds pyrolysis," Renewable Energy, Elsevier, vol. 237(PB).
- Chen, Long & Wang, Hong & Tu, Zhi & Hu, Jian & Wu, Fangfang, 2024. "Renewable fuel and value-added chemicals potential of reed straw waste (RSW) by pyrolysis: Kinetics, thermodynamics, products characterization, and biochar application for malachite green removal," Renewable Energy, Elsevier, vol. 229(C).
- Kuang, Yucen & Jiang, Tao & Wu, Longqi & Liu, Xiaoqian & Yang, Xuke & Sher, Farooq & Wei, Zhifang & Zhang, Shengfu, 2023. "High-temperature rheological behavior and non-isothermal pyrolysis mechanism of macerals separated from different coals," Energy, Elsevier, vol. 277(C).
- Hu, Hangli & Luo, Yanru & Zou, Jianfeng & Zhang, Shukai & Yellezuome, Dominic & Rahman, Md Maksudur & Li, Yingkai & Li, Chong & Cai, Junmeng, 2022. "Exploring aging kinetic mechanisms of bio-oil from biomass pyrolysis based on change in carbonyl content," Renewable Energy, Elsevier, vol. 199(C), pages 782-790.
- Ferfari, Oussama & Belaadi, Ahmed & Bourchak, Mostefa & Ghernaout, Djamel & Ajaj, Rafic M. & Chai, Boon Xian, 2024. "Thermal decomposition of Syagrus romanzoffiana palm fibers: Thermodynamic and kinetic studies using the coats-redfern method," Renewable Energy, Elsevier, vol. 231(C).
- Li, Chao & Li, Yuannian & Jiang, Yuchen & Zhang, Lijun & Zhang, Shu & Ding, Kuan & Li, Bin & Wang, Shuang & Hu, Xun, 2023. "Staged pyrolysis of biomass to probe the evolution of fractions of bio-oil," Energy, Elsevier, vol. 263(PD).
- Jiang, Yuchen & Li, Xianglin & Li, Chao & Zhang, Lijun & Zhang, Shu & Li, Bin & Wang, Shuang & Hu, Xun, 2022. "Pyrolysis of typical plastics and coupled with steam reforming of their derived volatiles for simultaneous production of hydrogen-rich gases and heavy organics," Renewable Energy, Elsevier, vol. 200(C), pages 476-491.
- Laougé, Zakari Boubacar & Merdun, Hasan, 2021. "Investigation of thermal behavior of pine sawdust and coal during co-pyrolysis and co-combustion," Energy, Elsevier, vol. 231(C).
- Małgorzata Sieradzka & Agata Mlonka-Mędrala & Izabela Kalemba-Rec & Markus Reinmöller & Felix Küster & Wojciech Kalawa & Aneta Magdziarz, 2022. "Evaluation of Physical and Chemical Properties of Residue from Gasification of Biomass Wastes," Energies, MDPI, vol. 15(10), pages 1-19, May.
- Chen, Yuxiang & Li, Chao & Zhang, Lijun & Zhang, Shu & Xiang, Jun & Hu, Song & Wang, Yi & Hu, Xun, 2024. "Varied directions of heat flow and emission of volatiles impact evolution of products in pyrolysis of wet and dry pine needles," Renewable Energy, Elsevier, vol. 226(C).
- Wen, Yuming & Zaini, Ilman Nuran & Wang, Shule & Mu, Wangzhong & Jönsson, Pär Göran & Yang, Weihong, 2021. "Synergistic effect of the co-pyrolysis of cardboard and polyethylene: A kinetic and thermodynamic study," Energy, Elsevier, vol. 229(C).
- Mohamed, Badr A. & O'Boyle, Marnie & Li, Loretta Y., 2023. "Co-pyrolysis of sewage sludge with lignocellulosic and algal biomass for sustainable liquid and gaseous fuel production: A life cycle assessment and techno-economic analysis," Applied Energy, Elsevier, vol. 346(C).
- Fei, Chengcheng J. & Kung, Chih-Chun, 2024. "The effects of tiered-electrical-subsidy policy on biopower development," Energy Policy, Elsevier, vol. 193(C).
- Cardarelli, Alessandro & Pinzi, Sara & Barbanera, Marco, 2022. "Effect of torrefaction temperature on spent coffee grounds thermal behaviour and kinetics," Renewable Energy, Elsevier, vol. 185(C), pages 704-716.
- Riaz, Sajid & Oluwoye, Ibukun & Al-Abdeli, Yasir M., 2022. "Oxidative torrefaction of densified woody biomass: Performance, combustion kinetics and thermodynamics," Renewable Energy, Elsevier, vol. 199(C), pages 908-918.
- Mumbach, Guilherme Davi & Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Domenico, Michele Di & Marangoni, Cintia & Machado, Ricardo Antonio Francisco & Bolzan, Ariovaldo, 2022. "Investigation on prospective bioenergy from pyrolysis of butia seed waste using TGA-FTIR: Assessment of kinetic triplet, thermodynamic parameters and evolved volatiles," Renewable Energy, Elsevier, vol. 191(C), pages 238-250.
- Liu, Hao & Li, Zenghua & Miao, Guodong & Yang, Jingjing & Wu, Xiangqiang & Li, Jiahui, 2023. "Insight into the chemical reaction process of coal during the spontaneous combustion latency," Energy, Elsevier, vol. 263(PB).
More about this item
Keywords
Hemicellulose removal; Lignin removal; Pyrolysis; Artificial neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:205:y:2023:i:c:p:851-863. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.