IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v247y2022ics0360544222001062.html
   My bibliography  Save this article

Co-pyrolysis of coal slime and cattle manure by TG–FTIR–MS and artificial neural network modeling: Pyrolysis behavior, kinetics, gas emission characteristics

Author

Listed:
  • Jiang, Chunlong
  • Zhou, Wenliang
  • Bi, Haobo
  • Ni, Zhanshi
  • Sun, Hao
  • Lin, Qizhao

Abstract

In this study, Thermogravimetric-Mass spectrometry-Fourier transform infrared spectrometry (TG-MS-FTIR) were used to study the co-pyrolysis behavior and gaseous products of coal slime (CS) and cattle manure (CM). By establishing different artificial neural network (ANN) prediction models, it was found that MLP13 model is the best prediction model. It was determined that the pyrolysis process of CM and CS can be divided into three stages, of which the second stage has the largest mass loss. Due to the different mixing ratio, there will be synergistic interaction or inhibitory effect during co-pyrolysis of CM and CS. Adding CM to CS will improve the pyrolysis performance of CS. The Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods were used to calculate the activation energy. The activation energy was the lowest when the mixing ratio is CM:CS = 7:3, which was 195.377 kJ/mol (FWO) and 195.008 kJ/mol (KAS), respectively.

Suggested Citation

  • Jiang, Chunlong & Zhou, Wenliang & Bi, Haobo & Ni, Zhanshi & Sun, Hao & Lin, Qizhao, 2022. "Co-pyrolysis of coal slime and cattle manure by TG–FTIR–MS and artificial neural network modeling: Pyrolysis behavior, kinetics, gas emission characteristics," Energy, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222001062
    DOI: 10.1016/j.energy.2022.123203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222001062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Candie & Liu, Jingyong & Zhang, Xiaochun & Xie, Wuming & Sun, Jian & Chang, Kenlin & Kuo, Jiahong & Xie, Wenhao & Liu, Chao & Sun, Shuiyu & Buyukada, Musa & Evrendilek, Fatih, 2018. "Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks," Applied Energy, Elsevier, vol. 212(C), pages 786-795.
    2. Merdun, Hasan & Laougé, Zakari Boubacar, 2021. "Kinetic and thermodynamic analyses during co-pyrolysis of greenhouse wastes and coal by TGA," Renewable Energy, Elsevier, vol. 163(C), pages 453-464.
    3. Wang, Chengxin & Bi, Haobo & Lin, Qizhao & Jiang, Xuedan & Jiang, Chunlong, 2020. "Co-pyrolysis of sewage sludge and rice husk by TG–FTIR–MS: Pyrolysis behavior, kinetics, and condensable/non-condensable gases characteristics," Renewable Energy, Elsevier, vol. 160(C), pages 1048-1066.
    4. Zhou, Kun & Lin, Qizhao & Hu, Hongwei & Hu, Huiqing & Song, Lanbo, 2017. "The ignition characteristics and combustion processes of the single coal slime particle under different hot-coflow conditions in N2/O2 atmosphere," Energy, Elsevier, vol. 136(C), pages 173-184.
    5. Shen, Xiuli & Huang, Guangqun & Yang, Zengling & Han, Lujia, 2015. "Compositional characteristics and energy potential of Chinese animal manure by type and as a whole," Applied Energy, Elsevier, vol. 160(C), pages 108-119.
    6. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Mong, Guo Ren & Chong, William Woei Fong & Nor, Siti Aminah Mohd & Ng, Jo-Han & Chong, Cheng Tung & Idris, Rubia & Too, Jingwei & Chiong, Meng Choung & Abas, Mohd Azman, 2021. "Pyrolysis of waste activated sludge from food manufacturing industry: Thermal degradation, kinetics and thermodynamics analysis," Energy, Elsevier, vol. 235(C).
    8. Bi, Haobo & Wang, Chengxin & Lin, Qizhao & Jiang, Xuedan & Jiang, Chunlong & Bao, Lin, 2020. "Combustion behavior, kinetics, gas emission characteristics and artificial neural network modeling of coal gangue and biomass via TG-FTIR," Energy, Elsevier, vol. 213(C).
    9. Duan, Lunbo & Liu, Daoyin & Chen, Xiaoping & Zhao, Changsui, 2012. "Fly ash recirculation by bottom feeding on a circulating fluidized bed boiler co-burning coal sludge and coal," Applied Energy, Elsevier, vol. 95(C), pages 295-299.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Guangyu & Meng, Jinghui & Zhang, Kai, 2024. "Process intensification of non-uniform additive pattern for coal slime drying by microwave heating," Energy, Elsevier, vol. 302(C).
    2. Qi, Huini & Li, Fashe & Wang, Shuang & Sui, Meng & Lu, Fengju, 2024. "Pyrolysis and co-pyrolysis of cattle manure, rape straw, and their blend: Physicochemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis," Energy, Elsevier, vol. 292(C).
    3. Ni, Zhanshi & Bi, Haobo & Jiang, Chunlong & Sun, Hao & Zhou, Wenliang & Qiu, Zhicong & He, Liqun & Lin, Qizhao, 2022. "Research on the co-pyrolysis of coal slime and lignin based on the combination of TG-FTIR, artificial neural network, and principal component analysis," Energy, Elsevier, vol. 261(PA).
    4. Hou, Fei & Zhong, Xiaoxing & Zanoni, Marco A.B. & Rashwan, Tarek L. & Torero, José L., 2024. "Multi-step scheme and thermal effects of coal smouldering under various oxygen-limited conditions," Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Chunlong & Lin, Qizhao & Wang, Chengxin & Jiang, Xuedan & Bi, Haobo & Bao, Lin, 2020. "Experimental study of the ignition and combustion characteristics of cattle manure under different environmental conditions," Energy, Elsevier, vol. 197(C).
    2. Dai, Ying & Sun, Meng & Fang, Hua & Yao, Huicong & Chen, Jianbiao & Tan, Jinzhu & Mu, Lin & Zhu, Yuezhao, 2024. "Co-combustion of binary and ternary blends of industrial sludge, lignite and pine sawdust via thermogravimetric analysis: Thermal behaviors, interaction effects, kinetics evaluation, and artificial ne," Renewable Energy, Elsevier, vol. 220(C).
    3. Zhang, Jinzhi & Zhang, Ke & Huang, Jiangang & Feng, Yutong & Yellezuome, Dominic & Zhao, Ruidong & Chen, Tianju & Wu, Jinhu, 2024. "Synergistic effect and volatile emission characteristics during co-combustion of biomass and low-rank coal," Energy, Elsevier, vol. 289(C).
    4. Tian, Lu & Lin, Kunsen & Zhao, Youcai & Zhao, Chunlong & Huang, Qifei & Zhou, Tao, 2022. "Combustion performance of fine screenings from municipal solid waste: Thermo-kinetic investigation and deep learning modeling via TG-FTIR," Energy, Elsevier, vol. 243(C).
    5. Sun, Hao & Bi, Haobo & Jiang, Chunlong & Ni, Zhanshi & Tian, Junjian & Zhou, Wenliang & Qiu, Zhicong & Lin, Qizhao, 2022. "Experimental study of the co-pyrolysis of sewage sludge and wet waste via TG-FTIR-GC and artificial neural network model: Synergistic effect, pyrolysis kinetics and gas products," Renewable Energy, Elsevier, vol. 184(C), pages 1-14.
    6. Kuang, Yucen & Jiang, Tao & Wu, Longqi & Liu, Xiaoqian & Yang, Xuke & Sher, Farooq & Wei, Zhifang & Zhang, Shengfu, 2023. "High-temperature rheological behavior and non-isothermal pyrolysis mechanism of macerals separated from different coals," Energy, Elsevier, vol. 277(C).
    7. Fan, Yongsheng & Lu, Dongsheng & Wang, Jiawei & Kawamoto, Haruo, 2022. "Thermochemical behaviors, kinetics and bio-oils investigation during co-pyrolysis of biomass components and polyethylene based on simplex-lattice mixture design," Energy, Elsevier, vol. 239(PC).
    8. Adrian K. James & Ronald W. Thring & Steve Helle & Harpuneet S. Ghuman, 2012. "Ash Management Review—Applications of Biomass Bottom Ash," Energies, MDPI, vol. 5(10), pages 1-18, October.
    9. Song, Yapeng & Hu, Wanrong & Qiao, Wei & Westerholm, Maria & Wandera, Simon M. & Dong, Renjie, 2022. "Upgrading the performance of high solids feeding anaerobic digestion of chicken manure under extremely high ammonia level," Renewable Energy, Elsevier, vol. 194(C), pages 13-20.
    10. Zhao, Shuchun & Guo, Junheng & Dang, Xiuhu & Ai, Bingyan & Zhang, Minqing & Li, Wei & Zhang, Jinli, 2022. "Energy consumption, flow characteristics and energy-efficient design of cup-shape blade stirred tank reactors: Computational fluid dynamics and artificial neural network investigation," Energy, Elsevier, vol. 240(C).
    11. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    12. Mattes Scheftelowitz & Daniela Thrän, 2016. "Unlocking the Energy Potential of Manure—An Assessment of the Biogas Production Potential at the Farm Level in Germany," Agriculture, MDPI, vol. 6(2), pages 1-13, April.
    13. Tian, Ye & Zhou, Xiong & Ji, Xuanyu & Bai, Jisong & Yuan, Liang, 2019. "Applying moderate or intense low-oxygen dilution combustion to a co-axial-jet I-shaped recuperative radiant tube for further performance enhancement," Energy, Elsevier, vol. 171(C), pages 149-160.
    14. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Abdulyekeen, Kabir Abogunde & Daud, Wan Mohd Ashri Wan & Patah, Muhamad Fazly Abdul, 2024. "Torrefaction of wood and garden wastes from municipal solid waste to enhanced solid fuel using helical screw rotation-induced fluidised bed reactor: Effect of particle size, helical screw speed and te," Energy, Elsevier, vol. 293(C).
    16. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    17. Roffeis, Martin & Fitches, Elaine C. & Wakefield, Maureen E. & Almeida, Joana & Alves Valada, Tatiana R. & Devic, Emilie & Koné, N’Golopé & Kenis, Marc & Nacambo, Saidou & Koko, Gabriel K.D. & Mathijs, 2020. "Ex-ante life cycle impact assessment of insect based feed production in West Africa," Agricultural Systems, Elsevier, vol. 178(C).
    18. Yuan, Xinsong & He, Tao & Cao, Hongliang & Yuan, Qiaoxia, 2017. "Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods," Renewable Energy, Elsevier, vol. 107(C), pages 489-496.
    19. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Bi, Haobo & Wang, Chengxin & Lin, Qizhao & Jiang, Xuedan & Jiang, Chunlong & Bao, Lin, 2020. "Combustion behavior, kinetics, gas emission characteristics and artificial neural network modeling of coal gangue and biomass via TG-FTIR," Energy, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222001062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.