IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v230y2024ics0960148124009480.html
   My bibliography  Save this article

Kinetic and thermodynamic behavior of co-pyrolysis of olive pomace and thermoplastic waste via thermogravimetric analysis

Author

Listed:
  • Sánchez-Ávila, N.
  • Cardarelli, Alessandro
  • Carmona-Cabello, Miguel
  • Dorado, M.P.
  • Pinzi, Sara
  • Barbanera, Marco

Abstract

This work represents the first attempt to analyze kinetics, thermodynamics and reaction mechanism of olive pomace (OP) and waste plastic materials (PM) co-pyrolysis. Among PM, polypropylene (PP), polystyrene (PS), high density polypropylene (HDPE), polyvinyl chloride (PVC) and poly (ethylene terephthalate) glycol (PETG) were selected. Non-isothermal TG experiments were carried out under inert conditions at four heating rates, namely 5, 10, 20 and 40 °C/min. The kinetic triplet for raw materials and their blends was determined using Starink, Kissinger-Akahira-Sunose and Ozawa-Flynn-Wall iso-conversional models. Pyrolysis mechanism reactions were explained by diverse models, depending on thermal degradation progress. Results shown that co-pyrolysis followed a complex multi-step reaction mechanism. A synergistic effect was detected during co-pyrolysis of OP/PM mixtures. The addition of 50 % (w/w) OP biomass to PM waste decreased the energy of activation (Ea) from 50 to 25 % for all blends, except for PVC/OP. Thermodynamic analysis reveals that adding OP generally reduces the energy barrier (ΔH), except for PS-OP, and improves energy efficiency (ΔG) by facilitating radical formation and molecular chain cleavage.

Suggested Citation

  • Sánchez-Ávila, N. & Cardarelli, Alessandro & Carmona-Cabello, Miguel & Dorado, M.P. & Pinzi, Sara & Barbanera, Marco, 2024. "Kinetic and thermodynamic behavior of co-pyrolysis of olive pomace and thermoplastic waste via thermogravimetric analysis," Renewable Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124009480
    DOI: 10.1016/j.renene.2024.120880
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124009480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124009480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.