IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics0360544224012003.html
   My bibliography  Save this article

Catalytic pyrolysis of rice husk to co-produce hydrogen-rich syngas, phenol-rich bio-oil and nanostructured porous carbon

Author

Listed:
  • Qi, Penggang
  • Su, Yinhai
  • Yang, Liren
  • Wang, Jiaxing
  • Jiang, Mei
  • Xiong, Yuanquan

Abstract

How to achieve high value modification of biomass through simple process and low cost is an important bottleneck in the development of biomass energy. In this study, hydrogen-rich syngas, phenol-rich bio-oil and high specific surface area nanostructured porous carbon materials were synthesized by one-step in situ catalytic pyrolysis at 500 °C. Composition and physicochemical property tests of the three-phase products showed that KOH promotes ring opening and bond breaking of macromolecules in the bio-oil, improves the directional selectivity of phenolic compounds, and generates more small molecule gases. Molten K+ and water vapor etched the biomass to prepare porous carbon with high graphitization and rich pore structure and generate more H2. Further electrochemical characterization showed that the porous carbon material had good specific capacitance and cyclic stability. This study provides a new idea for the utilization of pyrolysis polygeneration technology of agroforestry biomass resources, and it is also of guiding significance for the research of high-value utilization of biomass resources.

Suggested Citation

  • Qi, Penggang & Su, Yinhai & Yang, Liren & Wang, Jiaxing & Jiang, Mei & Xiong, Yuanquan, 2024. "Catalytic pyrolysis of rice husk to co-produce hydrogen-rich syngas, phenol-rich bio-oil and nanostructured porous carbon," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224012003
    DOI: 10.1016/j.energy.2024.131427
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224012003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rijo, Bruna & Soares Dias, Ana Paula & Ramos, Marta & Ameixa, Marcelo, 2022. "Valorization of forest waste biomass by catalyzed pyrolysis," Energy, Elsevier, vol. 243(C).
    2. Chen, Wei & Gong, Meng & Li, Kaixu & Xia, Mingwei & Chen, Zhiqun & Xiao, Haoyu & Fang, Yang & Chen, Yingquan & Yang, Haiping & Chen, Hanping, 2020. "Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH," Applied Energy, Elsevier, vol. 278(C).
    3. Zhou, Hui & Park, Ah-Hyung Alissa, 2020. "Bio-energy with carbon capture and storage via alkaline thermal Treatment: Production of high purity H2 from wet wheat straw grass with CO2 capture," Applied Energy, Elsevier, vol. 264(C).
    4. Sun, Ce & Tan, Haiyan & Zhang, Yanhua, 2023. "Simulating the pyrolysis interactions among hemicellulose, cellulose and lignin in wood waste under real conditions to find the proper way to prepare bio-oil," Renewable Energy, Elsevier, vol. 205(C), pages 851-863.
    5. Hu, Mian & Ye, Zhiheng & Zhang, Qi & Xue, Qiping & Li, Zhibin & Wang, Junliang & Pan, Zhiyan, 2022. "Towards understanding the chemical reactions between KOH and oxygen-containing groups during KOH-catalyzed pyrolysis of biomass," Energy, Elsevier, vol. 245(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Mingwei & Chen, Zhiqiang & Chen, Yingquan & Yang, Haiping & Chen, Wei & Chen, Hanping, 2024. "Effect of various potassium agents on product distributions and biochar carbon sequestration of biomass pyrolysis," Energy, Elsevier, vol. 289(C).
    2. Cormos, Calin-Cristian, 2023. "Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis," Energy, Elsevier, vol. 270(C).
    3. Kuo-Hsiung Lin & Jiun-Horng Tsai & Zhi-Wei Chou & Hung-Lung Chiang, 2021. "Product Characteristics of Sludge Pyrolysis and Adsorption Performance of Metals by Char," Sustainability, MDPI, vol. 13(21), pages 1-16, November.
    4. Liu, Hongwei & Wang, Yongzhen & Lv, Liang & Liu, Xiao & Wang, Ziqi & Liu, Jun, 2023. "Oxygen-enriched hierarchical porous carbons derived from lignite for high-performance supercapacitors," Energy, Elsevier, vol. 269(C).
    5. Branca, Carmen & Galgano, Antonio & Di Blasi, Colomba, 2023. "Dynamics and products of potato crop residue conversion under a pyrolytic runaway regime - Influences of feedstock variability," Energy, Elsevier, vol. 276(C).
    6. Sun, Haoran & Yang, Shiliang & Bao, Guirong & Hu, Jianhang & Wang, Hua, 2023. "Numerical evaluation of multi-scale properties in biomass fast pyrolysis in fountain confined conical spouted bed," Energy, Elsevier, vol. 283(C).
    7. Yujung Jung & Sanghun Lee, 2024. "Thermodynamic Feasibility Evaluation of Alkaline Thermal Treatment Process for Hydrogen Production and Carbon Capture from Biomass by Process Modeling," Energies, MDPI, vol. 17(7), pages 1-13, March.
    8. Bryan Díaz & Alicia Sommer-Márquez & Paola E. Ordoñez & Ernesto Bastardo-González & Marvin Ricaurte & Carlos Navas-Cárdenas, 2024. "Synthesis Methods, Properties, and Modifications of Biochar-Based Materials for Wastewater Treatment: A Review," Resources, MDPI, vol. 13(1), pages 1-33, January.
    9. Li, Junfeng & Zhou, Wei & Huang, Yuming & Zhao, Yang & Li, Xuhan & Xue, Naiyuan & Qu, Zhibin & Tang, Zhipei & Xie, Liang & Li, Jingyu & Liu, Zheyu & Fang, Yitian & Pi, Xinxin & Meng, Xiaoxiao & Zhao, , 2024. "Rapid preparation strategy of highly microporous activated carbons for gas adsorption, via tunable-energy-density microwave heating," Renewable Energy, Elsevier, vol. 225(C).
    10. Patel, Himanshu & Mohanty, Amar & Misra, Manjusri, 2024. "Post-combustion CO2 capture using biomass based activated porous carbon: Latest advances in synthesis protocol and economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Hu, Mian & Ye, Zhiheng & Zhang, Qi & Xue, Qiping & Li, Zhibin & Wang, Junliang & Pan, Zhiyan, 2022. "Towards understanding the chemical reactions between KOH and oxygen-containing groups during KOH-catalyzed pyrolysis of biomass," Energy, Elsevier, vol. 245(C).
    12. Aniza, Ria & Chen, Wei-Hsin & Lin, Yu-Ying & Tran, Khanh-Quang & Chang, Jo-Shu & Lam, Su Shiung & Park, Young-Kwon & Kwon, Eilhann E. & Tabatabaei, Meisam, 2021. "Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae," Applied Energy, Elsevier, vol. 300(C).
    13. Andrzej Mianowski & Tomasz Radko & Rafał Bigda, 2024. "Elements of Transition-State Theory in Relation to the Thermal Dissociation of Selected Solid Compounds," Energies, MDPI, vol. 17(11), pages 1-28, May.
    14. Ma, Jiao & Kong, Wenwen & Di, Weiqiang & Zhang, Zhikun & Wang, Zhuozhi & Feng, Shuo & Shen, Boxiong & Mu, Lan, 2022. "Synergistic effect of bulking agents and biodegradation on the pyrolysis of biodried products derived from municipal organic wastes: Product distribution and biochar physicochemical characteristics," Energy, Elsevier, vol. 248(C).
    15. Gurtner, D. & Kresta, M. & Hupfauf, B. & Götz, P. & Nussbaumer, R. & Hofmann, A. & Pfeifer, C., 2023. "Mechanical strength characterisation of pyrolysis biochar from woody biomass," Energy, Elsevier, vol. 285(C).
    16. Lim, B.A. & Lim, S. & Pang, Y.L. & Shuit, S.H. & Kuan, S.H., 2023. "Critical review on the development of biomass waste as precursor for carbon material as electrocatalysts for metal-air batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    17. Jie Jiang & Yongfa Diao, 2022. "The Effects of Physical-Chemical Evolution of High-Sulfur Petroleum Coke on Hg 0 Removal from Coal-Fired Flue Gas and Exploration of Its Micro-Scale Mechanism," IJERPH, MDPI, vol. 19(12), pages 1-29, June.
    18. Bartłomiej Igliński & Wojciech Kujawski & Urszula Kiełkowska, 2023. "Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development—A Review," Energies, MDPI, vol. 16(4), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224012003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.