IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v200y2022icp1059-1067.html
   My bibliography  Save this article

Accurate model reduction of large hydropower systems with associated adaptive inflow

Author

Listed:
  • Blom, Evelin
  • Söder, Lennart

Abstract

Simulation of sizeable hydro-thermal power systems, such as Northern Europe or larger, requires several extensive simplifications and model reductions to decrease simulation time. Such reductions for hydrosystems are often called Equivalent models. Their purpose is to mimic a more detailed hydropower model while decreasing computation time. Both aspects are vital for accurate and useable simulation results. Here, different Equivalent models for hydropower have been developed together with a new function for adaptive Equivalent inflow based on local inflows to the detailed system. The models were computed via a bilevel optimization problem factoring in the novel adaptive inflow. Based on this, the new function for adaptive inflow was calculated using regression. The Equivalents have then been evaluated in a case study of hydropower systems in Northern Sweden regarding accuracy in hourly and total power generation, revenue estimation, and relative computation time. For all Equivalents, the computation time is decreased by ¿96%. Further, the Equivalents demonstrate improved performances in hourly and total power production and revenue estimations. The best hourly power difference was 9.2%, and the best revenue estimation was 5.9%. Especially notable is the low total power production difference of ¡0.5% compared to the more detailed model.

Suggested Citation

  • Blom, Evelin & Söder, Lennart, 2022. "Accurate model reduction of large hydropower systems with associated adaptive inflow," Renewable Energy, Elsevier, vol. 200(C), pages 1059-1067.
  • Handle: RePEc:eee:renene:v:200:y:2022:i:c:p:1059-1067
    DOI: 10.1016/j.renene.2022.09.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122014161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walter, Viktor & Göransson, Lisa, 2022. "Trade as a variation management strategy for wind and solar power integration," Energy, Elsevier, vol. 238(PA).
    2. Markus Löschenbrand & Magnus Korpås, 2017. "Hydro Power Reservoir Aggregation via Genetic Algorithms," Energies, MDPI, vol. 10(12), pages 1-16, December.
    3. Maurice Clerc, 2010. "Beyond Standard Particle Swarm Optimisation," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 1(4), pages 46-61, October.
    4. Nycander, Elis & Söder, Lennart & Olauson, Jon & Eriksson, Robert, 2020. "Curtailment analysis for the Nordic power system considering transmission capacity, inertia limits and generation flexibility," Renewable Energy, Elsevier, vol. 152(C), pages 942-960.
    5. Jan-Philipp Sasse & Evelina Trutnevyte, 2020. "Regional impacts of electricity system transition in Central Europe until 2035," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    6. Askeland, Kristine & Bozhkova, Kristina N. & Sorknæs, Peter, 2019. "Balancing Europe: Can district heating affect the flexibility potential of Norwegian hydropower resources?," Renewable Energy, Elsevier, vol. 141(C), pages 646-656.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blom, Evelin & Söder, Lennart, 2024. "Single-level reduction of the hydropower area Equivalent bilevel problem for fast computation," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kena Likassa Nefabas & Mengesha Mamo & Lennart Söder, 2023. "Analysis of System Balancing and Wind Power Curtailment Challenges in the Ethiopian Power System under Different Scenarios," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    2. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
    3. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    4. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    5. Wen, Xin & Heinisch, Verena & Müller, Jonas & Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Comparison of statistical and optimization models for projecting future PV installations at a sub-national scale," Energy, Elsevier, vol. 285(C).
    6. Tafarte, Philip & Lehmann, Paul, 2023. "Quantifying trade-offs for the spatial allocation of onshore wind generation capacity – A case study for Germany," Ecological Economics, Elsevier, vol. 209(C).
    7. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Agbonaye, Osaru & Keatley, Patrick & Huang, Ye & Odiase, Friday O. & Hewitt, Neil, 2022. "Value of demand flexibility for managing wind energy constraint and curtailment," Renewable Energy, Elsevier, vol. 190(C), pages 487-500.
    9. Qiang Yang & Yu-Wei Bian & Xu-Dong Gao & Dong-Dong Xu & Zhen-Yu Lu & Sang-Woon Jeon & Jun Zhang, 2022. "Stochastic Triad Topology Based Particle Swarm Optimization for Global Numerical Optimization," Mathematics, MDPI, vol. 10(7), pages 1-39, March.
    10. Christos Agathokleous & Jimmy Ehnberg, 2020. "A Quantitative Study on the Requirement for Additional Inertia in the European Power System until 2050 and the Potential Role of Wind Power," Energies, MDPI, vol. 13(9), pages 1-14, May.
    11. Emre Yakut & Ezel Özkan, 2020. "Modeling of Energy Consumption Forecast with Economic Indicators Using Particle Swarm Optimization and Genetic Algorithm: An Application in Turkey between 1979 and 2050," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(1), pages 59-78, June.
    12. Guoxian Cao & Chaoyang Guo & Hezhong Li, 2022. "Risk Analysis of Public–Private Partnership Waste-to-Energy Incineration Projects from the Perspective of Rural Revitalization," Sustainability, MDPI, vol. 14(13), pages 1-19, July.
    13. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    14. Meha, Drilon & Pfeifer, Antun & Sahiti, Naser & Rolph Schneider, Daniel & Duić, Neven, 2021. "Sustainable transition pathways with high penetration of variable renewable energy in the coal-based energy systems," Applied Energy, Elsevier, vol. 304(C).
    15. Arabkoohsar, Ahmad & Alsagri, Ali Sulaiman, 2020. "A new generation of district heating system with neighborhood-scale heat pumps and advanced pipes, a solution for future renewable-based energy systems," Energy, Elsevier, vol. 193(C).
    16. Takele Ferede Agajie & Armand Fopah-Lele & Isaac Amoussou & Ahmed Ali & Baseem Khan & Emmanuel Tanyi, 2023. "Optimal Design and Mathematical Modeling of Hybrid Solar PV–Biogas Generator with Energy Storage Power Generation System in Multi-Objective Function Cases," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    17. Onodera, Hiroaki & Delage, Rémi & Nakata, Toshihiko, 2024. "The role of regional renewable energy integration in electricity decarbonization—A case study of Japan," Applied Energy, Elsevier, vol. 363(C).
    18. Nikita Belyak & Steven A. Gabriel & Nikolay Khabarov & Fabricio Oliveira, 2023. "Renewable Energy Expansion under Taxes and Subsidies: A Transmission Operator's Perspective," Papers 2302.10562, arXiv.org, revised Apr 2024.
    19. Jiang, Sufan & Wu, Chuanshen & Gao, Shan & Pan, Guangsheng & Liu, Yu & Zhao, Xin & Wang, Sicheng, 2022. "Robust frequency risk-constrained unit commitment model for AC-DC system considering wind uncertainty," Renewable Energy, Elsevier, vol. 195(C), pages 395-406.
    20. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:200:y:2022:i:c:p:1059-1067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.